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Abstract

This paper is devoted to a theory, introduced by the authors, of a
broad class of completely integrable Hamiltonian systems and Poisson
brackets on the space of finite-zone potentials or a fibering of hyperellip-
tic Jacobians. Analysis shows that the Poisson brackets corresponding
to known examples of integrable systems on this phase space belong to
the class studied. The geometry of the “action–angle” variables and the
coordination condition for the structures introduced with KdV theory is
investigated; examples are considered.
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Introduction
As is known, at the end of the sixties Gardner, Greene, Miura and Lax discov-
ered the “method of the inverse scattering problem” for solving the Korteweg-de
Vries equation (KdV) in the class of rapidly decreasing functions in x.

A history of this discovery and further development of the method can be
found in [1]. The problem of finding solutions periodic in x led to the discov-
ery of the so-called method of finite-zone integration created in 1974–1975 (see
[2]–[6] and the survey [7] or [1], Chapter II). The method of finite-zone inte-
gration is based on a synthesis of the theory of classical, completely integrable
Hamiltonian systems, the spectral theory of linear operators with periodic and
quasiperiodic coefficients (further developed in connection with KdV even for
the classical Hill or Schrödinger operator), and, finally, the classical algebraic
geometry of Riemann surfaces and Abelian varieties, including the theory of
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multidimensional theta functions. Further development of the method and a
number of new applications of it can be found in the surveys [8]–[11].

Already in the case of the ordinary KdV equation the so-called finite-
zone solutions (including the formal complex analogue of them) form a finite-
dimensional manifold of dimension 3g + 1 in the space of functions of x for
each integer g = 1. The collection of “higher KdV” on this manifold in one
realization is a commutative pencil of Hamiltonian systems in the space C2g

depending rationally on g + 1 parameters and having polynomial Hamiltoni-
ans. Another realization of this same pencil of phase spaces identifies it with
the affine part of the (3g + 1)-dimensional space of a fibering of hyperelliptic
Jacobians; the base of this fibering is the moduli space of hyperelliptic curves
(more precisely, the symmetrized set of roots λ0, λ1, . . . , λ2g of the polyno-
mial R2g+1(λ) =

∏
j(λ − λj) for the realization of the curve Γ in the form

y2 = R2g+1(λ); the fiber is the Jacobi variety J(Γ) of the curve Γ, i.e., an
Abelian torus of complex dimension g). The “higher KdV” in the second real-
ization are rectilinear windings of the tori J(Γ). As I. R. Shafarevich pointed
out after a talk by S. P.Novikov in 1974 before the algebraic geometry seminar
at Moscow State University, the fact of the unirationality of the space of moduli
of hyperelliptic Jacobians J(Γ) which follows from a comparison of these rela-
tions was previously not known in algebraic geometry (see the theorem in [12]).
Of course, this fact could have been derived also from other systems of clas-
sical mechanics and geometry know already in the nineteenth century to be
integrable in theta functions (for example, the case of Kovalevskaya for genus
g = 2, as indicated in [7], or the geodesic flow on ellipsoids of all dimension in
elliptic coordinates discovered by Jacobi for the integration of geodesics [13]).
Earlier, however, before the appearance of the method of finite-zone integra-
tion in KdV theory, algebraic geometry did not exploit the connection with
the theory of classical integrable Hamiltonian systems (although classical me-
chanicists, on the other hand, who discovered familiar integrable cases, used
theta functions, especially of genus g = 2). Further more profound applications
of the method of finite-zone integration of nonlinear systems in the theory of
Abelian varieties (in particular, in the well-known Schottky problem) can be
found in the survey [9]. A number of new applications of the theory of vector
bundles over algebraic curves Γ and projective space CP 3 to the integration of
equations of mathematical physics can be found in the surveys [10] and [11].

This paper is devoted to further development of the theory of Hamiltonian
systems completely integrable in the Liouville sense on the phase space already
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discussed above of finite-zone potentials (solutions of KdV) or of hyperelliptic
Jacobians J(Γ); this theory was begun in [14]. The rich collection of classical
and new integrable systems, connected, as analysis shows, with precisely this
phase space, leads to a multitude of distinct Poisson brackets on it which
possess an interesting algebro-geometric structure that is, in a particular sense,
common to all of them. It is interesting that many Poisson brackets lead to
pencils of complex tori that are not even Abelian varieties (see the and of §1).

1 Phase spaces (complex). Analytic Poisson brack-
ets. Complex tori

We prescribe some algebraic family (variety) Mn whose points are some col-
lection of parameters determining algebraic curves which are not necessarily
hyperelliptic, Γ ∈Mn. The same curve up to equivalence may be encountered
several times; n is the complex dimension. For any integer k > 1 there is the
natural fibering

Nn+k SkΓ−−→Mn, (1)
where the fiber over a point Γ ∈ Mn is the symmetric degree of the curve
Γ: (P1, . . . , Pk) ∼ (Pi1 , . . . , Pik). For the special case k = g (the genus of the
curve) the fiber is birationally equivalent to the Jacobi variety SkΓ ∼= J(Γ).

There are two most important examples in the theory of integrable systems.

Example 1. Γ ∈M2g+1 is given in the form

y2 =

2g∏
j=0

(λ− λj) = R(λ). (2)

Here Γ is determined by the symmetrized collection (λ0, . . . , λ2g). In some
problems the covering M̂g →M2g+1 determined by the unsymmetrized collec-
tion (λ0, . . . , λ2g) ∈ M̂g arises.

Example 2. Γ ∈M2g+2 is given in the form

y2 =

2g+1∏
j=0

(λ− λj) = R(λ), (3)

where the polynomial R(λ) has degree 2g + 2,

(λ0, . . . , λ2g+1) ∼ (λi0 , . . . , λi2g+1) ∈M2g+2.
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For convenience we shall henceforth always assume that the family of al-
gebraic curves Mn is given to us in the form of m-sheeted coverings of the
λ-plane, Γ

λ→ C1, so that a “general” point P has the function λ(P ) as local
coordinate. A symmetrized collection (P1, . . . , Pk) ∈ Sk Γ has a standard col-
lection of local coordinates at a “general” point λ(P1) = γ1, . . . , λ(Pk) = γk,
where Pj = (γj, εj) and εj is the index of the sheet which assumes m values.
In the most important hyperelliptic case of Examples 1 and 2 we have m = 2
and εj = ±

√
1. Sometimes we shall somewhat carelessly denote the point Pj

itself by γj if in the given context this causes no confusion. Thus, points of
the space Nn+k have the form

Nn+k = {(Γ; (γ1, ε1), . . . , (γk, εk)) , (γi, εi) ∈ Γ, Γ ∈Mn} . (4)

The analytic Poisson brackets of importance for us are determined as fol-
lows:

a) There is given a subsheaf of rings A in the sheaf of germs of meromorphic
functions onMn depending only on a point of the base Γ ∈Mn. Subrings
of the form AU for open domains U play the role of the “annihilator”
of the Poisson bracket which is actually concentrated on subvarieties
NA ⊂ Nn+k where f = const for all f ∈ A : NA →MA ⊂Mn.

b) There is given a meromorphic differential 1-form Q(Γ) on the Riemann
surface Γ or its covering Γ̂ → Γ depending on Γ̂ as a parameter. In local
notation we have:

Q(Γ) = Q(Γ, λ) dλ.

It is required that the derivatives of Q(Γ) along all directions of the base
tangent to the manifoldsMA be globally defined meromorphic differential
forms on the algebraic curve Γ itself (rather than on the covering Γ̂).

c) In all the most important examples it has been found that either the form
Q is meromophic on Γ from the very beginning or it is meromorphic on
the regular covering Γ̂ with Abelian momodromy group Γ̂ → Γ, where
the image π1(Γ̂) → π1(Γ) → H1(Γ,Z) is generated by a collection of
cycles a1, . . . , ak with zero pairwise intersection indices aj ◦ as = 0.

Remark. We have k = g (the genus) for the KdV and sine-Gordon equa-
tions and the Toda lattice, and k = g + 1 for the NS equation (the nonlinear
Schrödinger equation) (see [18]). For general matrix systems of order l+ 1 we
have k = g + l.
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Definition. If the closed 2-form

ΩQ =
k∑

i=1

dQ(Γ, γi) ∧ dγi
(5)

is nondegenerate at a “general” point, i.e. in a Zariski-open region of the
manifold NA where the pair (A,Q) possesses properties a), b), and c), then we
say that an analytic Poisson bracket with annihilator A is given on an open
region of the manifold Nn+k. In this case the dimension of the manifold NA

must be equal to 2k, dimMA = k 6 n.

By definition, the Poisson bracket (5) is given by the properties

1) {γi, γj} = 0 (i, j = 1, . . . , k),

2) {Q(γi), Q(γj)} = 0 (i, j = 1, . . . , k),

3) {Q(γj), γi} = δji (i, j = 1, . . . , k),

4) {f, γj} = {f,Q(γk)} = 0, f ∈ A,

(6)

where the annihilator A contains only functions of the form f(Γ), Γ ∈ Mn.
The following straigthforward result holds.

Proposition 1. Any analytic Poisson bracket possesses the following property:
any two functions g, h depending only on a point of the base Γ ∈Mn (i.e., only
on the Riemann surface) are in involution:

{g(Γ), h(Γ)} = 0. (7)

Proof. Let λ1, . . . , λk be coordinates on the manifoldMA; then it follows easily
that the form ΩQ contains in its expansion only terms of the form dλi ∧ dγj,
i.e., the matrix of the form has block form:

ω =

∥∥∥∥ 0 A
−At 0

∥∥∥∥ , Aij =
∂Q

∂λi

(γj).

The Poisson bracket is determined by the inverse matrix which has the same
block structure, whence the involutivity of λi and (7) follow. The proposition
is proved.

Remark 1. Below it will be very important (see the end of this section) that
the Poisson bracket is given only on an open region in the manifold Nn+k. It
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will be clear that the “true” phase space of the “action-angle” variables, which
we shall call the complex phase space of Liouville variables, if it has a natural
compactification may lead to fiberings different from (1) where the fiber is
bimeromorphically (birationally) nonisomorphic to the variety Sk Γ.

Remark 2. The rest of the theory is not altered in an essential way if γj is
replaced by γ̃j = γj + fj(Γ) in the definition of the bracket. Although this is
apparently precisely the case in some concrete systems, we shall not investigate
this case.

We further consider pairs (A,Q) such that all derivatives of Q along tan-
gential directions τ1, . . . , τk to the manifolds MA at a “general” point Γ ∈MA

constitute a collection of meromorphic 1-forms ∇τi
Q on Γ with the following

properties.

1. The forms ∇τi
Q can be presented in the form

∇τi
Q = ωi + ω̃i +

l∑
t=1

˜̃ωit,

where the forms ωi are holomorphic on Γ, and the forms ω̃i are mero-
morphic with zero residues at all poles; the forms ˜̃ωit have a pair of poles
of first order (P ′t , P

′′
t ) at which the residues differ only in sign.

2. If k > g, then it is required that the forms ωi generate the one dimen-
sional cohomology group H1,0(Γ) = Cg and wi = 0, i > g.

For the distinguished canonical basis of cycles

(a1, . . . , ag, b1, . . . , bg), ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij

we require the normalization∮
aj

ωi = δij (i 6 g),

∮
aj

ω̃q =

∮
aj

˜̃ωqt = 0.

The case where the pairs of poles of first order (P ′t , P
′′
t ) do not intersect

pairwise or with the other poles of higher orders we shall call the case of
“general position”.

The residues of the form Q whose gradients on MA are the residues of
the forms ˜̃ωit at the poles of first order P ′t depend only on Γ. We denote
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them by ϕt(Γ). The transcendence degree of the collection of functions
ϕt(Γ) on a “general” manifold MA (i.e., the functional dimension modulo
the annihilator A) we denote by κ.

According to Proposition 1, all Hamiltonians of the form H(Γ) commute
with one another. The standard Liouville procedure for introducing formal
“angle” variables (complex for the time being) which have linear time depen-
dence leads to the following assertion for Hamiltonians of the form H(Γ).

Proposition 2. If a Poisson bracket of general position is given by a pair
(A,Q) satisfying conditions 1 and 2 (see above), then the following complex
variables at a point (Γ = Γ0, (γ1, ε1), . . . , (γk, εk)) of general position are inde-
pendent and have linear dynamics in time:

Ψj =
k∑

i=1

∫ (γi,εi)

P0

∇τj
Q. (8)

The variables Ψj are defined up to the lattice in the space Ck generated by
the 2g + l vectors e1, . . . , eg, e

′
1, . . . , e

′
g, ηi, . . . , ηk of the form

ei
q =

∮
aq

∇τi
Q = δi

q, e
′i
q =

∮
bq

∇τi
Q = biq, η

i
s =

∮
δs

∇τi
Q. (9)

The cycles δs are small circular contours enclosing the poles of first or-
der P ′s, s = 1, . . . , l. Among these vectors at a point of general position
(Γ0, γ1, . . . , γk) there are precisely 2g+κ which are linearly independent over Z.
The vectors τi are tangent to the surface of the constant annihilator MA ⊂Mn

in the base of the fibering (1) and generate the tangent space to MA. The fol-
lowing inequality holds:

2g + κ 6 2k, κ 6 l.

The proof of the proposition follows immediately from the classical Liouville
procedure (see, for example, [15], §50).

Remark 1. It makes sence to discuss the special choice of the vectors τi corre-
sponding to differentiation of Q along the so-called action variables canonically
conjugate to the “angles” on the tori varying from 0 to 2π only for the real
theory in the case where the level surfaces are compact, i.e., represent tori T k

(see §2).
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Remark 2. The compact complex torus T 2k can arise for the variables Ψ in
the case where 2g + κ = 2k. The most important case is κ = 0 (k = g). An
Abelian torus is by no means always obtained (on the contrary, very rarely).
We point out that the present situation can arise for systems whose origi-
nal phase space was an algebraic variety, while the integrals were polynomials
or rational functions. Therefore, the level surfaces in the complex sense are
algebraic varieties. The replacement (8) may possess ambiguity and singulari-
ties. Therefore, the complex space of Liouville variables, generally speaking, is
bimeromorphically nonequivalent to the original phase space. Their real parts
may nonetheless be analytically diffeomorphic. If the torus T 2k is non-Abelian,
then there is no theory of theta functions connected with it, and there are no
good formulas for solutions in terms of meromorphic special functions on the
torus where the argument varies linearly with time. It is interesting that only
tori of the form J(Γ) arise from the method of the inverse problem.

We point out that in correspondence with the preceding results we con-
struct a theory of integration only for Hamiltonians of the form H(Γ). We
shall first consider a system given only on an open region of points of general
position (the Poisson bracket may have singularities on a special submanifold).
Thus, for example, on the fibers Sk Γ there are distinguished only subregions
V ⊂ Sk on which the replacement (8) is one-to-one.

Conclusion. The family of algebraic curves Mn with 1-form Q(Γ) and annihila-
tor A makes it possible, using (8), to construct a completely different complex
fibering distinct from (1), where the fiber is the factor JQ(Γ) = Ck/D and D
is the lattice of (9).

It is possible that the fibering (10) can be constructed nonsingularly only
over “general” level surfaces of the annihilator A:

N(Q,A)

JQ(Γ)
−−−→MA. (10)

We shall consider the important case κ = 0 or k = g of general po-
sition when the variables (8) are actually defined on the compact complex
torus JQ(Γ). The following result is a summary of the foregoing considera-
tions.

Theorem 1. The usual Abel transformation Sg Γ → J(Γ) linearizes the dy-
namics of all Hamiltonians of the form H(Γ) for Poisson brackets defined by
pairs (A,Q) of general position possessing properties 1 and 2 (see above) if and
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only if the derivatives ∇τi
Q in all directions tangent to the “general” manifold

of the constant annihilator MA provide a basis of the holomorphic 1-forms of
the Riemann surface Γ.

The proof follows immediately from the Propositions 1 and 2 by comparing
(8) with the Abel transformation.

2 The real structure. “Action-angle” variables

We shall assume that the family of algebraic curves Mn is given as a manifold
with an antiholomorphic involution σ : Mn →Mn, σ2 = 1, extended to an anti-
involution of the fibering with fiber Γ: Nn+1 → Mn. The fixed manifold Mσ

A

thus consists only of curves Γ with an antiholomorphic involution σΓ : Γ → Γ,
σ2

Γ = 1. The form Q = Q(Γ, λ) dλ and the annihilator A here must also be
coordinated in the natural way with the involutions σ and σΓ of the fibering
Mn+1 →Mn with fiber Γ:

a) σ∗ΓQ = Q onNn+1,

b) σ∗A = A onMn.
(11)

The simplest class of real structures, which we shall call “elementary” for
the Hamiltonian systems of interest to us, can be described as follows. We
consider M - or (M − 1)-curves Γ where the number of fixed ovals of the anti-
involution στ is equal either to g + 1 (M -curves) or g ((M − 1)-curves). For
M -curves k = g or k = g + 1 is possible. For (M − 1)-curves only k = g is
possible (we assume that k = g; see §1; the case k < g is also interesting, but
we do not consider it for the time being). The Hamiltonian H(Γ) must be real,
i.e., H(σΓ) = H(Γ).

Lemma. If the Poisson bracket (A,Q) is coordinated with the elementary real
structure, i.e., it possesses property (11), then the real collections γ1, . . . , γk

are invariant under the dynamics generated by H(Γ), where the γi all lie on
pairwise distinct, fixed ovals of the anti-involution:

γj ∈ aj, ai ∩ aj = Φ (i = i1, . . . , ig or i = 1, 2, . . . , g + 1). (12)

For M-curves and k = g the possible collections γi ∈ ai form the g + 1
connected component which is isomorphic to real torus T g. For M -curves
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and k = g + 1 or (M − 1)-curves and k = g there is only one connected
component—the real torus T g+1 or T g.

The lemma is proved by an obvious verification. We have the real structure
with the tori (12) in the case k = g for KdV and the case k = g + 1 for NS+

(the nonlinear Schrödinger equation with attraction).
Elementary real structures of more general type, by definition, represent a

transformation Sk σΓ : Sk Γ → Sk Γ generated by the original anti-involution
σΓ on the curve; the “real” subset (in the complex case the torus T k) may be
distinguished among the fixed points Sk σΓ(x) = x in some manner distinct
from (12).

Nonelementary real structures for k = g arise in the important example of
the very familiar sine-Gordon equation and for k = g+1 for the NS− equation
(the nonlinear Schrödinger equation with repulsion). For all systems admitting
general Lax matrix representations of order l + 1 we have k = g + l (see
[7], Chapter III, and [16]); if the realness conditions are such that the so-
called monodromy matrix after a period (in the periodic problem) for the
corresponding linear Lax L-operator belongs to a compact Lie group (similar
to the group SU(2) for the sine-Gordon and NS equations), then the real
structure is nonelementary.

Suppose the Poisson bracket is given by a pair (A,Q) and there is given an
anti-involution

σ : Mn →Mn, σΓ : Nn+1 → Nn+1,

while the Hamiltonian is real: H(σx) = H(x), x ∈Mn, X a Riemann surface.
According to §1, we have the fibering (10)

N(A,Q)

JQ(Γ)
−−−→MA

over a “general” level surface of the annihilator A.

Definition. A nonelementary real structure is an arbitrary anti-involution
τ : N(A,Q) → N(A,Q) commuting with the fibering (10), i.e., with the usual
involution on the family of Riemann surfaces: σ, σΓ. The realness conditions
for A and Q remain the same (11). On fibers JQ(Γ) the transformation τ must
be a superposition of translation and an isomorphism of the real commutative
groups JQ(Γ).
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Real submanifolds in phase space are distinguished proceeding from condi-
tions (13) or (14):

σ(Γ) = Γ, τ(η) = η; (13)

σ(Γ) = Γ, τ(η) = −η + η
(α)
0 . (14)

The case (14), which is encountered for the sine-Gordon and NS− equations,
is especially interesting. For a given curve the constant vector η(α)

0 may assume
a finite number of values α = 1, . . . ,m. Calculation of these quantities for the
sine-Gordon equation was first carried out in [17]; the problem of explicitly
distinguishing real solutions in the language of theta-function formulas on J(Γ)
was thus solved.

However, the involution τ is badly described in the variables γ1, . . . , γk;
apparently, in the cases of NS− and sine-Gordon it is not possible to explicitly
and effectively distinguish the collections γ1, . . . , γk for real solutions.

In the joint work of Dubrovin and Novikov the homological image in

H1(Γ \ (P1 ∪ P2),Z)

was determined and computed corresponding to “real” collections γ1, . . . , γk for
these two equations, where P1 and P2 are the infinitely distant points for NS−
(the curve Γ has the form y2 = R2g+2(λ)); for the sine-Gordon equation Γ is
given in the form y2 =

∏2g
j=0(λ−λj), λ0 = 0; P1 = 0, P2 = ∞. The homological

image is a collection of cycles a1, . . . , ak, where aj ◦ ai = 0, “corresponding” to
real tori T k.

The next assertion, which shows the importance of this collection of ele-
ments in H1(Γ,Z), follows from the proof of the Liouville theorem (see [14]).

Proposition 3. For analytic Poisson brackets satisfying elementary and nonele-
mentary realness conditions the action variables Jj canonically conjugate to the
angular coordinates on the tori T k varying from 0 to 2π are given by

Jj =
1

2π

∮
aj

Q(Γ, λ) dλ. (15)

Proof. Formula (15) represents, by definition, the quantity Jj =
∮

ãj
p dq,

where the ãj are the basis 1-cycles on the tori T k. For the class of Poisson
brackets we are studying the variables Jj acquire an important interpretation
not only as integrals over the elements ãj from the group H1(T

k,Z) according
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to Liouville, but also as integrals over the elements aj of the group H1(Γ\P,Z)
where P is the set of poles of the form Q or the forms ∇τj

Q for its derivatives
along MA; this proves the proposition.

Lemma. Compact real tori T k are possible only when

k 6 2g + κ, (16)

where κ is the number of essential residues of the poles of the form Q modulo
the annihilator A.

Proof. As indicated in §1, the number 2g + κ coincides for “general” brackets
given by the pair (A,Q) with the rank of the lattice D in the space Ck of the
variables (8). Since the real anti-involution τ is an automorphism of the real
group JQ(Γ) and the dimension of the torus over R is equal to k, inequality
(16) means simply that the dimension of the torus cannot be greater than the
rank of the lattice. The lemma is proved.

We shall call δ = 2k − 2g − κ (the corank of the lattice) the number of
variables of “phase type”, if the real parts are compact tori.

The varieties JQ(Γ) are fibered in the form

JQ(Γ)
Cs/Zδ

−−−→ J̃k−s
Q (Γ), s > δ,

where J̃Q(Γ) is a compact complex torus. Under the conditions of the lemma
we have s = δ.

3 Poisson brackets coordinated with KdV the-
ory. The most important examples

Definition. A Poisson bracket on the phase space (4), where Γ are hyperellip-
tic curves of the form y2 =

∏2g
j=0(λ−λj) = R(λ) is said to be coordinated with

KdV theory if all the higher KdV are Hamiltonian in this bracket. Here k = g.

In [14] a number of examples were given of brackets coordinated with KdV
theory (see below). For such brackets JQ(Γ) = J(Γ) always, i.e., the usual Abel
transformation defined by means of the collection of basis holomorphic differen-
tial forms linearizes the dynamics of virtue of Hamiltonians of the form H(Γ).
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Theorem 2. a) An analytic Poisson bracket is coordinated with KdV the-
ory if and only if all the forms ∇τQ—the derivatives in directions τ
tangent to a level surface of functions from the annihilator A—are holo-
morphic and generate the group H1,0(Γ).

b) If the bracket is coordinated with KdV, then the coefficients of the expan-
sion

Q(Γ, λ) =
∞∑

k=−N

(z
2

)k

qk(Γ), z = λ−1/2,

are such that q2l+3(Γ) = hl(Γ) are Hamiltonians of the higher KdV with
index l > 0, while the remaining coefficients qk belong to the annihila-
tor A.

Remark 1. Part b) was established by the authors in [14].

Proof. The usual Abel transformation linearizes the dynamics of all higher
KdV; the necessity of the condition is therefore obvious. Suppose now that
there is given a bracket (A,Q) such that ∇τQ = ωτ are holomorphic differen-
tials generating the entire space H1,0(Γ). Since z = λ−1/2, from the holomor-
phicity of the derivatives ∇τQ along tangent directions to MA it follows that
the expansion for large λ has the form

Q(Γ, λ) =
∞∑

k=0

(z
2

)2k+3

Hk(Γ) + Ann,

where Ann is a series with coefficients in the annihilator. We shall prove that
Hk(Γ) for k = 0, 1, . . . , g−1 are the Hamiltonians of precisely the first g higher
KdV. We consider the standard set of holomorphic forms ω1, . . . , ωg normalized
by the conditions ∮

aj

ωs = 2πiδjs,

where aj, bj is the basis of cycles on Γ such that

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij.

We define two collections of variables ϕi (i = 1, . . . , g) and ψj (j = 0, . . . , g−1):

ϕs =

g∑
j=1

∫ (γj ,εj)

P0

ωs, ψs =

g∑
j=1

∫ (γj ,εj)

P0

αs, αs =
∂Q

∂Hs

∣∣∣∣
A

.
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The forms αs are holomorphic and have at λ = ∞ the expansion (z = λ−1/2)

αs =

[
2
(z

2

)2s

+O(z2g)

]
dz (s = 0, . . . , g−1).

The transition matrix ωs = Asjαj is formed from the coefficients of the expan-
sion of the forms ωs, namely

ωs =
∞∑

j=0

csjz
2j dz,

at the point λ = ∞, so that

Asj = 21−2jcsj.

For Abelian differentials of second kind Ωj with zero a-periods and having a
single pole at λ = ∞ with asymptotics Ωj = −d(z2j−1) + O(1) the following
equality holds (see [19], §10–3):∮

bs

Ωj = csj = 22j−1Asj.

From this it follows that the columns of the matrix Aij coincide with the vectors
which on the Jacobians J(Γ) give the direction of the flows of the higher KdV
with the corresponding indices j = 0, 1, . . . , g − 1. On the other hand, these
columns, by definition, are the direction vectors of Hamiltonian flows with
Hamiltonians H0, . . . , Hg−1. Thus, for the first g flows coordination has been
proved. For the remaining flows it is automatically satisfied, since they can be
expressed in terms of the first g on our phase space.

The proof of the theorem is complete.

We now list the most important examples.

Example 1. The standard bracket [20], [21]. From the results of [22] we derive

Q = 2ip(λ) dλ, A =

{
T1, . . . , Tg, ū = lim

T→∞

1

T

∫ T

0

u dx

}
,

where the Ti are the periods of the quasiperiodic potential u(x), p(λ) is the
quasimomentum, and dp(λ) is a differential of second kind with a single pole
at λ = ∞,

dp(λ) = d(z−1) +O(1), z = λ−1/2,∮
aj

dp(λ) = 0, j = 1, . . . g.



POISSON BRACKETS AND COMPLEX TORI 15

Example 2. The pencil of local brackets for all higher KdV (see [23]), where
the Hamiltonian systems have the form

u̇ =

(
al + b

∂

∂x

)
δH

δu
, l =

1

2

∂3

∂x3
+ u

∂

∂x
+

∂

∂x
u.

Here we have
Q = 2ip(λ)(aλ+ b)−1 dλ .

If Ik are the Kruskal integrals, then

l
δIk
δu

=
∂

∂x

δIk+1

δu
.

There is a relation among the integrals Ik — the stationary higher KdV equa-
tion which the potential u(x) satisfies

g+1∑
k=0

ck
δIg−k

δu
= 0, c0 = 1.

The quantity J =
∑g

0 ckIg−k−1 belongs to the annihilator of the bracket for
b = 0, since

l
δJ

δu
=

∂

∂x

δ

δu

(
g∑

k=0

ckIg−k

)
=

∂

∂x
const = 0.

We thus obtain (for b = 0)

A = (T1, . . . , Tg, J).

Example 3. The Hamiltonian formalism of the stationary problem for higher
KdV generated by the variational calculus. Coordination with KdV theory is
proved in [24]; the Hamiltonians of the higher KdV are computed in [25]. Here

Q =
√
−R(λ) dλ, R(λ) =

2g∏
i=0

(λ− λi).

This result can be derived from [26] and [27]. As is known, the annihilator is
generated by the first g + 1 symmetric polynomials in λ′i.



16 A. P.VESELOV AND S.P.NOVIKOV

Example 4. The Hamiltonian structure generated by the so-called latent iso-
morphism of Moser-Trubowitz (see [28]) and [13]) between the KdV dynamics
on the space of finite-zone potentials and the classical Neumann systems de-
scribing the dynamics on the sphere Sg in R2g+1,

Sg =
{
x : |x2| = 1, x ∈ Rg+1

}
,

under the action of the quadratic potential

U(x) =
1

2

g∑
i=0

aix
2
i .

The coefficients ai, representing the set of end points of the zones λi, here play
the role of the annihilator. Using [28] and [13], we obtain (see also [27])

Q =
√
−R(λ)

g∏
j=0

(λ− λ2j)
−1 dλ, A = {λ0, λ2, . . . , λ2g} .

Example 5. The integrable case of Goryachev and Chaplygin in the dynamics
of a rigid body with a fixed point [30]. Here

Q(Γ, λ) = arcsin
1

µ

(
λ2

2
− 1

2
H − 2G

λ

)
,

whereH is the energy of the gyroscope, G is the Goryachev-Chaplygin integral,
and µ is a parameter of the problem. The curve Γ is given by the equation

y2 = 4µ2λ2 − (λ3 −Hλ− 4G)2.

Example 6. In the well-known Kovalevskaya case the action variables were
not computed previously. Let I1, I2 and I3 be, respectively, the energy, area,
and Kovalevskaya integrals, and let γi = si be the Kovalevskaya variables (see
[30]). Calculations lead to the result

Q(Γ, λ) =
1

2
√
−λ

ln

[√
−λ
(
(λ− I1)

2 − I2
3

)
− ν2

2
√
−λ

(λ− 2I2
2 ) +

√
−R(λ)

]
,

R(λ) =
(
λ
(
(λ− I1)

2 + ν2 − I2
3

)
− 2ν2I2

2

) (
(λ− I1)

2 − I2
3

)
,

while the curve Γ is given by the equation y2 = R(λ). Integrating
Q = Q(Γ, λ) dλ over the “real” cycles aj on which the γi lie, we obtain the
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action variables Jj. In correspondence with the result of Kovalevskaya the
Abel transformation linearizes the dynamics (we note that the replacement of
the time and Hamiltonian structure proposed by G.V.Kolosov (see [29]) leads
for this system to non-Abelian tori).

The integrable Steklov case for a solid body in a fluid is also of major
interest.
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