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Introduction

In a previous paper [1], the author and Shmel’tser started the construction of an
extended Lyusternik–Shnirelman–Morse theory for the study of single-valued and
multivalued functionals on the space Ω̂+(Mn) of losed directed curves in a mani-
fold Mn. The authors applied these methods to the classical problem (Kirchhoffs
problem) about the free motion of a rigid body in an ideal incompressible liquid,
where the fluid flows potentially and is at rest at infinity. From a modern point
of view, Kirchhoff-type equations are defined by a Hamiltonian H (coinciding with
the classical energy) and Poisson brackets { , } for functions in phase space (the
dual space L∗ of the algebra L of the group E(3) of motions of the Euclidean space
R3). In the classical Kirchhoff case, we have

(1)

2H =
3∑
i=1

aiiM
2
i + 2

3∑
i,j=1

bij

(
pjMi + piMj

2

)
+

3∑
i,j=1

cijpipj > 0,

{Mi,Mj} = εijkMk, {Mi, pj} = εijkpk, {pi, pj} = 0,

Mi = {Mi,H}, ṗi = {pi,H}.
Here M and p are, respectively, the angular momentum and linear momentum in
a moving coordinate system. Any quadratic form on L∗ is reducible to (1) by the
action of E(3). There exist universal Kirchhoff integrals such that

(2)
f1 = p2 =

∑
p2
i , f2 = ps =

∑
Mipi,

{fl,Mi} = {fl, pi} = 0, l = 1, 2, i = 1, 2, 3.

The present paper is a direct extension of [1]; a detailed list of references is given
in [1].

1. Nonpositivity of a Functional and Redundant Extremals

By properties of the algebra L of the group E(3), on a level surface of the
Kirchhoff integrals (s, p) the Hamiltonian system (1) is reduced to a Lagrangian
system on the sphere S2. When s 6= 0, for topological reasons the Lagrangians
are not defined on the whole sphere S2 (they are defined only in domains Uα ⊂
S2). Simultaneously, the collection of Lagrangians Lα in the domains Uα defines a
“multivalued” functional S (or SE) on the space of closed curves. Here δSE turns

Date: Original article submitted January 15, 1981.

UDC. 517.9.
L. D. Landau Institute for Theoretical Physics, Academy of Sciences of the USSR. Translated

from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 15, No. 4, pp. 37–52, October–December,

1981.
1



2 S. P. NOVIKOV

out to be a closed 1-form on the infinite-dimensional manifold of closed directed
piecewise smooth curves on S2. In this section the cases s = 0 and s 6= 0 turn out
to be essentially different (for s = 0 the functionals S and SE are single-valued).
Both cases (s = 0 and s 6= 0) are characterized by the common property that the
Lagrangians (26′) and (26′′) in [1] [see formulas (3) and (4) below] contain terms in
ẋ. These terms (the “magnetic field”) do not detract from the local Morse theory
around a given curve depending only on the positivity of the matrix ∂2L/∂ẋ ∂ẋ.
The main difference between Lagrangians of this type and functionals of length in
Finsler geometry, where there is also no invariance under t → −t, is the absence
of strict positivity (and, or course, multivaluedness when s 6= 0). Although we
have established the semiboundedness of SE(γ) for a special class of curves [1],
nevertheless, it is also possible that for some curve γ homotopic to zero (it must be
homotopic to zero in a given domain Uα of single-valuedness of the Lagrangian in
the multivalued case, where the “magnetic field” is a 2-form, which is not exact),
the functional SE(γ) is less than zero. Since SE(γ) = 0 for one-point curves, the
following lemma holds.1

Lemma 1. If there is a curve γ homotopic to zero in a domain Uα such that
SE(γ) < 0, then there are not less than two in the case of general position, and
always not less than one “redundant” periodic orbits as well as the homologically
nontrivial ones given by Theorem 1b of [1] and Theorem 2 of the present paper (see
below).

Proof. This follows in a straightforward way from the fact that for all E > maxU(x),
the functional SE(γ) has a local minimum on the one-point curves. If SE(γ) < 0,
then there is still a minimum, and a saddle in the case of general position, since
for a minimum γmin we must have SE(γmin) < 0. In the situation of Theorem 1b
of [1] and of Theorem 2 below, the saddle can degenerate (two saddles can merge
into one degenerate one). This proves the lemma. �

By [1], the Lagrangians corresponding to the Hamiltonian H of Kirchhoff’s prob-
lem have the form

L(x, ẋ) =
1
2
glmẋ

lẋm −Alẋ
l − U(x),

where

(3)

Aldx
l = sA

(1)
l dxl + pA

(2)
l dxl + s sin θ dψ,

x1 = θ, x2 = ψ, ξ1 = pθ, ξ2 = pψ,∑
p2
i = p2,

∑
Mipi = sp, Mi = qi + sp−1pi,

q1 = pψ tg θ cosψ − pθ sinψ, q2 = pψ tg θ sinψ + pθ cosψ, q3 = −pψ,
p2 = p cos θ sinψ, p1 = p cos θ cosψ, p3 = p sin θ,

glmξlξm =
∑

aiiq
2
i > 0, A

(1)
l = glmA

m
1 , A

(2)
l = glmA

m
2 ,

Am1 ξm =
∑

aiiqipip
−1, Am2 ξm =

∑
bij(qipip−1 + qjpip

−1)/2,

2U(x) = s2
[∑

aiip
2
i p

−2 − glmA
l
1A

m
1

]
+ p2

[∑
cijpipjp

−2 − glmA
l
2A

m
2

]
+ 2spU12,

U12 =
∑

bijpipjp
−2 − glmA

l
1A

m
2 .

1Here we assume that SE = 0 on one component of single-point curves and SE > 0 on the

second component; see the beginning of Sec. 2.
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By going over to the Lagrangian LE which is equivalent by “Maupertuis’s principle,”
we obtain

(4)
LE dt =

√
2(E − U)glmdxl dxm − sA

(1)
l dxl − pA

(2)
l dxl − s sin θ dψ,

x1 = θ, x2 = ψ.

In view of the gauge invariance of LE we can set s2E1 = E for s 6= 0 or p2E2 = E
for p 6= 0, and extract from the Lagrangian the factor

(5) L
(1)
E1

= LE |s|−1, L
(2)
E2

= LEp
−1,

where the Lagrangians L(1)
E1

and L(2)
E2

have the same form but depend only on sp−1 =
f2f

−1
1 .

Lemma 2. Suppose that for a fixed sp−1, E1 or E2 is decreasing. There is an E10

(or E20) depending on sp−1 and on all the constants aii, bij, and cij such that for
E > s2E10 (or E > p2E20) SE is strictly positive on the whole space of piecewise
smooth closed directed non-self-intersecting curves on S2.2

Proof. Suppose that s−2(E−U) →∞. Then the length of any curve is increasing.
Whereas we showed earlier that the integral of a 1-form Aldx

l is bounded in modulus
for all non-self-intersecting curves. The proof follows at once from here. �

We consider the Lagrangians L and LE only for E > maxU(θ, ψ). There arises
the question of the positivity of LE in the intervals

(6) maxV < E < s2E10, maxU < E < p2E20.

Lemma 3. There is a nontrivial domain of constants (sp−1, aii, bij , cij), where
SE(γ) < 0 for certain E > maxU and curves γ.

Proof. This is indicated by the following examples. �

Example 1. Let a11 = a22 = a33, s → ∞ and p = const. Then we obtain the
Lagrangian (4), where after dividing LE by s, the potential tends to a constant as
s→∞:

(7)

U(θ, ψ) = U0 +O(s) ∼ s2(const +O(s−1)),

s−2U0 = a11

∑
p2
i p

−2 = a11,

sAl1 + pAl2 = s(Al1 +O(s−1)),

Al1ξl =
∑

aiiqipip
−1 = a11p

−1
(∑

qipi

)
= 0.

In view of (7), (E − U)glm can be made arbitrarily small as E → U0 and s → ∞.
Deduction: For any curve γ on S2 there is an E1 = Es−2 sufficiently close to
S−2U0 = const that SE(γ) < 0 (s→∞).

Example 2. Let bij = γaiiδij and cij = (λ + aii)b2iia
−2
ii δij ; we set sp−1 = biia

−1
ii .

Then we obtain the potential U = const in the Lagrangian L. Again, as in Example
1, for any curve γ homotopic to zero in a domain Uα on S2, along which the integral
of (Al dxl) is nonzero, we obtain SE(γ) < 0 if E → U = U0.

2See footnote previous page.
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Next we try to look for the “small” test curves γ for which SE(γ) < 0. We
consider the point x0 where the potential U attains a maximum

(8)
U(θ0, ψ0) = U0 = maxU, gradU(θ0, ψ0) = 0,

[∂2U/∂xi∂xj ] dxi dxj < 0.

We choose a coordinate system about this point so that at x = x0

(9) 2d2(U0 − U) = λ2(dx)2 + µ2(dy)2, λ2 = λmax > µ2, ġlm = δlm = ġlm.

We select a test curve γ = γε in the tangent space at x0 in the form of a square
of side 2ε with center at x0 and sides parallel to the principal axes x, y of the form
d2(U0 − U). For small ε → 0 we can project γ = γε from the tangent space onto
the sphere S2.

Lemma 4. As (λ, µ) varies and for a sufficiently small ε → 0 the quantity l =∮ √
2(U0 − U)glm dxl dxm satisfies the inequalities 6λmaxε

2 < l < 9.2ε2λmax if
λmax = λ2 > µ2.

Proof. This is by a direct calculation with the following asymptotic equality holding
as ε→ 0:

LU0 = LE ∼
√

(λ2x2 + µ2y2)(dx2 + dy2)−Al dx
l,

l ∼ 4λ
∫ ε

0

{√
ε2 +

µ2

λ2
y2 dy +

√
x2 +

µ2

λ2
ε2 dx

}
. �

Theorem 1. a) We consider on S2 a point x0 of maximum potential U(θ, ψ) of the
Kirchhoff problem (1) for certain constants aii, bij , cij, and sp−1, and the maximum
eigenvalue λmax of the form 2d2(U0 − U):

det
(

2gkm
∂2(U0 − U)
∂xl ∂xm

− λmaxδ
k
l

)
= 0.

If for the effective magnetic field H = H12(x0)

(10) 9.2λmax < 4|H12(x0)|
√

det glm,

then for the above test curve, SU0(γε) < 0, ε→ 0. Here H12 = ∂A1/∂x
2−∂A2/∂x

1,
b) If U = const, then this is true for any curve γ provided that E is sufficiently

close to U0 (and the flux of the field H12 through the area is nonzero).

Corollary. For both of these cases there are not less than two “redundant” periodic
orbits for all s and for all energies E in some nonzero interval maxU = U0 < E <
U1.

(The term “redundant” is used for a comparison with the minimally necessary
number arising from the homologies.) The fulfillment of (10) depends on the con-
stants (aii, bij , cij , sp−1).

Proof of Theorem 1. This follows immediately from the preceding lemmas and the
following observation: inequality (10) is simply an invariant form of notation for the
fact that the value of the integral along γε of the linear (with respect to velocity)
term in LU0 , which is ≈ 4ε2H12 for components in the principal axes, is greater in
modulus than the integral of the kinetic energy on the “critical” level surface E =
U0. By a proper choice of the direction of the curve γ = γε we obtain SE(γ) < 0.
By fixing γ we can decrease E while preserving the inequality SE(γ) < 0. �
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Remark. Theorem 1 and its corollary remain valid for the motion of a charged
particle over an ideally conducting metallic sphere S2 ⊂ R3 under some embedding
with a metric glm, in the external magnetic field H12 in the interval (6) in terms of
the energy, if either the potential is trivial but the energy is less than some threshold
E < Ẽ1, or the magnitude of the field H12 at the point of maximum potential (if
it is nontrivial) satisfies (10). Here the saddle trajectory γ1, where SE(γ1) > 0,
lies very close to the maximum point x0 (and is created” from this point under a
bifurcation with respect to the parameter E), whereas the minimal trajectory γ2,
where S(γ2) < 0, can lie very far away from x0 and does not undergo bifurcation
as E passes through U0.

It is of interest to try by analogy with [2] (Chap. 6) to analyze also the case
E < maxU , taking into account the property of variational problems investigated
here and resulting from the “magnetic” terms in the Lagrangian. One should bear
in mind that when E < maxU the difficulties connected with the effect of the
multivaluedness of the action and the Lagrangians disappear, since any 2-form
is exact on S2 with a punctured neighborhood of a point. Questions relating to
the nonpositivity of the functional that result from the “magnetic” terms present
serious difficulties.

2. Periodic Motions in the Kirchhoff Problem when f2 6= 0, and in the
Problem of the Motion of a Heavy Rigid Body in an Axisymmetric

Gravitational Field (j 6= 0)

We consider a multivalued functional or 1-form δSE(γ) only on the space Ω̂+
1 of

directed non-self-intersecting curves γ ⊂ S2, in accordance with [1]. Since this space
is simply connected [it contracts to S2 × I(−1, 1), where both edges of the interval
I correspond to one point curves], the infinite-dimensional 1-form δSE defines on
Ω̂+

1 (S2) a single-valued function (functional) SE such that SE(γ0) = 0, where the
γ0 are one-point curves. But in constructing the natural compactification K of Ω̂+

1

by one-point curves K0 by means of the functional SE , we approach K0 “from two
sides” and with two values of SE . One of these is zero, while the second is a positive
number. Therefore, K0 lies on the boundary of K in two copies of K+

0 ∪K−
0 .

Now we state explicitly an essentially self-evident property of a multivalued
functional SE on the space Ω̂+

1 ; the use of this property was overlooked in [1]: on
any sheet of the covering of the space of directed closed curves, the complete inverse
image of the one point curves is a local minimum of SE (which is single-valued on
the covering). It follows directly from here that under the map S2 × I → K of the
embedding of the set of plane sections, where the boundary S2×1∪S2× (−1) = B
maps into one-point curves K+

0 ∪K−
0 ⊂ K, the image of both basic cycles modulo

the boundary from the groups H∗(S2 × I,B) of both one- and three-dimensional
cycles, in a sufficiently small neighborhood of the edges always lies (in terms of the
value of SE) “above” the one-point curves. This property is preserved under any
gradient-similar deformation fixed at the edges that is pointwise “below” in terms of
the levels of the functional. Hence, both cycles “hang” at nontrivial critical points
with the levels of the functional “above” both of the one-point curves. Thus, we
obtain the ultimate general result.



6 S. P. NOVIKOV

Theorem 2. Let an arbitrary Kirchhoff type Hamiltonian of the following form be
defined on the phase space L∗ dual to the algebra L of the group E(3):

(11) 2H =
∑

aij(p)MiMj + 2
∑

bi(p)Mi + V (p),

where the form aij(p) is positive for all p. Then for any fixed values of the Kirchhoff
integrals (p 6= 0, s), and for any energy E greater than some threshold, E > E0(s, p),
the system has not less than two non-self-intersecting periodic trajectories for which
the value of the functional SE is greater than 4π|s|. After reducing system (11) to a
Lagrangian system on S2 with fixed (s, p 6= 0), E0(s, p) coincides with the maximum
of the potential.

Proof. This is given above together with the observation that the reduction of
system (11) to a Lagrangian system leads in an obvious way to a Lagrangian of the
form (3), (4) with a positive kinetic energy (the metric on S2) depending only on
the form aij . The value of SE on the second one-point component K−

0 is (see [1])

4π|s| =
∣∣∣∣∫∫

S2
Ω

∣∣∣∣ =
∣∣∣∣∫∫

S2
s cos θ dθ ∧ dψ

∣∣∣∣ .
�

In the Kirchhoff problem we always have aij > 0, the whole Hamiltonian H is a
positive quadratic form. We obtain the following corollary.

Corollary 1. The Kirchhoff equations (1) always have not less than two periodic
non-self-intersecting trajectories for any energy E > maxU(x).

The problem of the motion of a heavy rigid body about a fixed point in an
axisymmetric gravitational field can be reduced to a problem in phase space L∗

with a Hamiltonian of the form (11)3:

(12) 2H =
∑

aiiM
2
i + 2V (Ripi),

∑
p2
i = 1,

where V (z) is the gravitational potential and R = (Ri) is the center of mass.
For example, the classical case V = −mgz is nontrivial. We obtain the following
corollary.

Corollary 2. For any value of the “area integral” (corresponding to f2 when this
problem is embedded the phase space L∗) and any value E > E0(s, p), there are
not less than two periodic motions (for f = 0 see [2, Chap. 6]).

Now we turn our attention to the following interesting situation: the Kirchhoff
Hamiltonian when ai3 = bi3 = ci3 = 0 (i 6= 3) (and the Hamiltonian of a heavy
rigid body in an axisymmetric gravitational field, and R1 = R2 = 0 always admit
a symmetry, viz., a reflection in the p3 axis (see Sec. 5). Consequently, in this case
we can apply the reasoning of Sec. 5: there are two periodic orbits among the plane
sections of the sphere S2 orthogonal to the p3 axis (one for each direction with any
value of the area integral j or f2). These orbits can probably be found explicitly;
the author assumes that they were known to early investigators, in any case for
a heavy rigid body in the potential field V = −mgz (it cannot be otherwise!).

3It is curious that in this case the pi do not have the physical meaning of momentum, in

contrast to the Kirchhoff problem. If A is a transformation from a fixed coordinate system to a
rotating one, and e3 is the unit vector along the z axis, then p = A(e3). It can be seen that p is
nondimensional.
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The appearance of “redundant” orbits must be sought by the method of Sec. 1
[new orbits found by this method turn out to be plane sections if the maximum
of the potential U(θ, ψ) lies in a strip]. Thus, for j 6= 0 or f2 6= 0, when there
is an axial reflection (a symmetry of the second order), the extended calculus of
variations “in the large” (Lyusternik–Shnirelman–Morse theory) ensures that the
minimal number of critical points of the functional demanded by homology theory
is gathered entirely from plane sections. An algorithm for finding these solutions
is as follows: 1) we integrate the Lagrangian LE overplane sections of a given
direction that are orthogonal to p3; 2) then we regard the result of the integration
as a function of p3 and find its extremum with respect to p3.

In the case of an even potential V (z2) and R1 = R2 = 0, we obtain a Hamiltonian
H which is invariant under the group Z2 × Z2 of all reflections in orthogonal axes;
see also Sec. 5, Example 2. In this case we have trivially six periodic trajectories
of the form of plane rotations for all values of j.4

3. Variational Problems on the Space of All Curves for Compact
Two-Dimensional Manifolds (E 7→ ∞)

We use the fact, proved in Lemma 2, that SE(γ) is positive for some E > E0

for closed non-self-intersecting curves on a compact two-dimensional manifold M2

of some homotopy class, and for any direction. Hence, it follows that for E > E0

the action SE(γ) is positive for all piecewise-smooth closed curves, since a curve in
general position can be easily broken down into non-self-intersecting curves. Thus,
we have the following lemma.

Lemma 5. For Lagrangians of the form (3), (4) with a positive metric glm on a
compact manifold M2, there is an energy “threshold” E0 such that for E > E0,
SE(γ) is positive for any piecewise-smooth directed curve.

Deduction. For sufficiently large energies E > E0, any pair of points x1 ∈ M2,
x2 ∈ M2 can be joined by at least one extremal of the Lagrangian LE for any
direction x1 → x2 or x2 → x1. �

Note that in a problem with two end points it is not possible, in principle, to
work with spaces of non-self-intersecting curves, in contrast to a periodic problem
on two-dimensional manifolds.

4. Some Examples of Variational Problems in a Magnetic Field on
Complete Riemannian Manifolds (Open and Compact)

Before turning to results of a general nature, we discuss some useful examples.
I. We consider the Lobachevskii plane L2 with, e.g., a standard metric, and a

magnetic field, i.e., a 2-form H12dσ (dσ is an element of area), and possibly a
potential field V (x, y) that are invariant under some discrete group of motions Γ
(from a compact fundamental domain). First we suppose that V ≡ 0 and H12 =
H = const. We consider an associated pair of Lagrangians in L2 (y > 0)

L =
ml20(ẋ

2 + ẏ2)
2y2

+
eHl20
cy

ẋ,(13′)

LE dt =
√

2Eml20y−2(dx2 + dy2) +
eH

cy
l20 dx,(13′′)

4If V = V (z2) and R1 = 0, then we have the group Z2 of reflections in the p1 axis.



8 S. P. NOVIKOV

where l0 is the “radius of curvature.” An integration leads without difficulty to
the fact that starting from some threshold of energy E, the trajectories recede to
infinity (in absolute magnitude), and for a fixed E any pair of points can be joined
by an extremal. Thus, the condition for the motion to be infinite has the form

(14) ω =
eH

mc
, ω <

2E
ml20

.

The reason for this is intuitively obvious: it is known that for large circles in L2 the
length and area have the same order of magnitude. Whichever of these is greater
when the Lagrangian (13′′) is integrated along the curve is decided by the constants
E, H, and l0 (e, c, and m are fixed); see the discussion at the end of Sec. 2 about
a magnetic field on a plane.

Now we consider a fieldH(x, y) invariant under a discrete group Γ with a compact
factor, and a mean field H̄, where the form (H(x, y) − H̄)dx ∧ dy y−2 is exact on
the compact factor-space L2/Γ = M2. The following holds.

Assertion. There is a unique constant A > 0 such that for 4ω2 < Em−1l−2
2 ,

ω = eH̄12m
−1c−1, the functional SE(γ) is semibounded on the space of piecewise-

smooth directed curves (self-intersecting or not, and of any orientation).

Consequently, in this case, any pair of points of L2 can be joined by an extremal
with a fixed E; there are necessarily extremals periodic on L2/Γ with any homotopy
class, apart from the trivial one. This is true also for metrics periodic under Γ, and
also in a periodic potential field U if E > maxU .

II. We have a close situation for the motion of charged particles over a closed
metal surface (of any shape) located in an external magnetic field Hij . In this case
the assertion simplifies: the mean field H̄ij is always zero. Another case is more
interesting.

The metal surface can be M2 ⊂ R3, which outside a compact domain coincides
with the plane R2 ⊂ R3, located in a (for example) constant magnetic field Hij

in R3. The surface M2 is distorted in the finite part distinct from the plane,
and can have handles, i.e., a nontrivial topology (genus g > 0). We consider the
action functional SE(γ) on the space of closed directed non-self-intersecting curves
γ homotopic to a large circle lying in the “exterior” region, where M2 = R2, with
a direction opposite to the motion in circular orbits on the plane R2 in a constant
field Hij . For a genus g > 1 these curves are not homotopic to zero (there are no
point curves among them). By analogy with part c) of Theorem 2 of [1], we see
that SE(γ) is semibounded.

Assertion. In this situation there must be a periodic orbit directed opposite to
the circular trajectories of the motion on R2 in the field Hij . These trajectories
“hang” on the handles of the surface M2 ⊂ R3, where it differs from the plane R2.

III. Now we consider a two-dimensional problem of the motion of particles in the
(x, y) plane in a doubly periodic external magnetic field H12(x, y) directed along
the z axis with a nonzero flux through an elementary cell K

(15) H̄12 =
1
|K|

∫∫
K

H12 dx ∧ dy 6= 0.

This problem (partly discussed in [1]) can be interpreted as a Hamiltonian motion
on the torus T 2 with a trivial Hamiltonian H = m(ẋ2 + ẏ2)/2 = p2/2m, but a
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nontrivial Poisson bracket [1]

(16) {x, y} = {x, py} = {y, px} = 0, {x, px} = {y, py} = 1, {px, py} = H12(x, y).

A Lagrangian of the form (3), (4) arises in the usual way. We take the space of
closed non-self-intersecting piecewise-smooth curves described in the direction of
rotation of the circular orbits in a constant field H̄12. For large (in area compared
with length) trajectories γ, the action S(γ) < 0. By considering a 1-parameter
family of curves emanating from one-point curves to infinitely wide ones, and by
deforming them “below” in terms of a gradient with a fixed initial point, it is
obvious that we shall “sit” at the critical points of index 1. Thus, the following
theorem holds.

Theorem 3. For every energy E > 0 there is at least one periodic non-self-
intersecting orbit in R2 if the magnetic field H12(x, y) directed along the z axis
is double periodic, and the mean field H̄12 is nonzero. This periodic orbit turns in
the same direction as in a constant field.5

Remark. This result is also true when the magnetic field is such that the mean
H̄R over a disk of large radius R does not tend to zero with R (or it tends slowly,
slower than R−1) while keeping the same sign as R→∞.

IV. Now we turn to the formulation of problems of a general nature connected
with the essentially multivalued functionals defined in [1]. Let Mn be an arbitrary
complete Riemannian manifold with a metric gij . [If the potential U(x) is such
that E > maxU(x) for a given energy, then it can be eliminated by a reduction
to a new metric g̃Eij = (E − U(x))gij . We require that Maupertuis’s metric g̃Eij is
complete. Hence we can assume that U ≡ 0.] Suppose that there is defined a closed
nonexact 2-form (a “magnetic field”)

(17) 0 6= [Hij dx
i ∧ dxj ] ∈ H2(Mn,R).

As usual, let Ω̂+(Mn) denote the space of all piecewise-smooth directed closed
curves on Mn, and Ω̂+(Mn, x1, x2) denote the space of directed paths going from x1

to x2. There is a natural Serre fibering Ω̂+(Mn) π−→Mn with a fiber Ω̂+(Mn, x1, x2) =
Ω+(Mn, x1), where to a closed path γ(t) there corresponds π(γ) = γ(0) [γ(0) ∈Mn

is the value at 0]. There is a section q : Mn → Ω̂+(Mn) consisting of one-point
curves Mn ⊂ Ω̂+(Mn). In the nonsimple connected case π1(Mn) 6= 0, we must
assume that Ω̂+(Mn) is the space of curves homotopic to zero in Mn; we denote by
M̃n the universal covering of Mn. Obviously, H1(Ω̂+(Mn),Mn; R) = H2(M̃n,R).
There are two cases:

a) if π1(Mn) = 0, then M̃n = Mn;
b) if π1(Mn) 6= 0, then it is possible that H2(Mn, R) 6= 0 but H2(M̃n,R) = 0

(e.g., when Mn = Tn).
We assume that in the case being studied π1(Mn) = 0, or more generally,

although π1(Mn) 6= 0, the magnetic field has a cohomology class coining from
H2(M̃n) → H2(Mn). The second case is reduced to the first by the substitution

5The one-point curves form the torus T 2. Similarly, each cycle zi ∈ Hi(T
2) in general position

generates across a “saddle point” a critical point of index i + 1. Thus, we obtain four periodic

orbits for each energy E > 0 (they are all non-self-intersecting). It should be borne in mind that

this problem cannot originate from the physics of a rigid body: the length of the path of a classical
particle in a crystal is very small.
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Mn → M̃n. Hence we can assume from the beginning that π1(Mn) = 0. In this
case, by [1] we have in any domain Uα ⊂Mn a Lagrangian Lα such that the 2-form
of the magnetic field Hij dx

i ∧ dxj is exact in dωα = d(Ai dxi) = Hij dx
i ∧ dxj . Let

(18) Lα dt = ωα −H dt+
∑

pidx
i,

where H is the Hamiltonian generated by the metric

(19) 2H = gijpipj ,

xi are local coordinates and the pi denote momenta. The Lagrangian Lα has the
form

(20) Lα =
1
2
gij ẋ

iẋj = Aiẋ
i.

It is obvious that in our case the positivity condition holds

(21) ξiξj
∂2Lα
∂ẋi ∂ẋj

> 0.

According to [1] there is a many-valued functional SE(γ) on the space Ω̂+(Mn),
i.e., δSE is a closed 1-form and thereby a single-valued function on some nontrivial
minimal covering f : ˆ̂Ω+ → Ω̂+(Mn) (of infinitely many sheets). The covering f
is regular with the free Abelian monodromy group Z × · · · × Z. We denote the
generating monodromy groups by T1, . . . , Tk. The number k of them is determined
by general considerations as follows: we need to choose a basis z1, . . . , zl in the
group H1(Ω̂+(Mn),Z) (mod torsion) and consider “integrals” of the 1-form δSE
along the paths z1, . . . , zl in the space Ω̂+(Mn) [“scalar products” (δSE , zj) = κj ].
As always, the number of generators k of the monodromy group of the minimal
covering of ˆ̂Ω+ that turns δSE into an exact 1-form on ˆ̂Ω+, is equal to the rank of
the collection of real numbers (κ1, . . . , κl) over the integers. Next it is convenient
to assume, making integer changes of the basis, that κj = 0 for j > k.

Note that the quantities κj are exactly the set of integrals of the magnetic
field, i.e., of the 2-form Hijdx

i ∧ dxj over the base of the cycles in the group
H2(Mn,Z)/Torsion = H1(Ω̂+(Mn),Mn,Z)/Torsion. Thus, for simply connected
manifolds Mn, the homologically nontrivial magnetic field generates a many-valued
functional, where the monodromy group of the minimal covering eliminating the
multivaluedness, is defined by the integrals of the field over the basic integral 2-
cycles. If the magnetic field yields integer-valued integrals κj , then the covering of
Ω̂+ in which we are interested is a Z-covering.

In a neighborhood of the complete inverse image f−1(Mn) ⊂ ˆ̂Ω+, where Mn a
Ω̂+(Mn) is a set of one-point curves, we have a local minimum of the action SE on

all sheets of the covering. Consider the image of a segment in ˆ̂Ω+ under the maps
αj : I → ˆ̂Ω+(Mn) such that the αj(0) (the image of the origin) lie in the same set

of one-point curves Mn
1 ⊂ ˆ̂Ω+(Mn), and the αj(1) (the image of the end) lie in

the other component Mn
2 ⊂ ˆ̂Ω(Mn) of the complete inverse image f−1(Mn). We

assume that SE = 0 on the “zero” component. Then the value of the action on the
component Tj(Mn

1 ) is equal to κj , j = 1, . . . , k (we recall that the basis has been
chosen so that κj = 0 for j > k). The map αj on I generates a function with a
maximum strictly inside the segment. By minimizing the maxima over all maps αj



VARIATIONAL METHODS AND PERIODIC SOLUTIONS ... II 11

we obtain the minimal map of the segment (a critical point of SE). In the “general
position” case this critical point has index 1. The value SE(γj) of the action on
this periodic extremal γj is no less than κj . Thus, we have proved the following
theorem.

Theorem 4. On a complete simply connected Riemannian manifold Mn with a
metric gij there always exists a nontrivial (for any energy E > 0) periodic extremal
of any direction in a homologically nontrivial magnetic field Hij. In the general
position case the Morse index of this extremal is 1.

Now we consider an entirely similar situation but another problem: we look for
extremals connecting the points x1 and x2. The simplest examples show that this
problem is unsolvable even for R2 with the Euclidean metric in a one-dimensional
(constant) magnetic field H for a sufficiently small energy E > 0. Let x1 and x2

be sufficiently close (for a given fixed energy E) that there is a locally minimal
extremal γx1x2 ∈ Ω̂+(Mn, x1, x2) joining them.

The proof of the following theorem is completely analogous to that of Theorem 4.

Theorem 5. If for any complete simply connected Riemannian manifold Mn with a
distinguished 2-form H there is at least one locally minimal (relative to SE) extremal
γx1x2 going from x1 to x2, then on Mn there is at least one saddle extremal of index
1 with the same energy E > 0, that goes from x1 to x2.

5. Examples of Functionals with a Finite Symmetry Group

In the theory of Kirchhoff equations the Poisson bracket (2) and the integrals f1
and f2 are invariant under all reflections Tk in any of the axes, e.g.,

(22)

Tk : Mi → −Mi, Mj → −Mj , Mk →Mk, pi → −pi, pj → −pj ,
pk → pk,∑

Mipi →
∑

Mipi,
∑

p2
i →

∑
p2
i , i 6= j 6= k.

If under reflection (22) Hamiltonian (11) is mapped into itself, then this trans-
formation enables us to decrease the number of closed trajectories in Theorem 1.
In particular, the Hamiltonian [(1), bij = biiδij , cij = ciiδij ] is invariant under the
three reflections in the orthogonal planes (the integrals f1 and f2 are fixed) that
generate the finite group of symmetries of SE on the space of directed curves. In
principle, we can consider Hamiltonians H invariant under any finite subgroups
G ⊂ SO(3). But for quadratic Hamiltonians of the form (1), the presence in G of
at least one element of order greater than 2 automatically makes the problem trivial
(it gives rise to a continuous group of symmetries and complete integrability).

Example 1. The group G = Z2 (a reflection in an axis; let k = 3). Then the
following elements are trivial: ai3 = bi3 = ci3 = 0 (i 6= 3). The transformation T3

generates a transformation T ∗3 of the space of closed non-self-intersecting directed
curves into itself. All the fixed points T ∗3 γ = γ of T ∗3 are plane sections of the
sphere S2 (the integrals s and p are fixed) perpendicular to the third axis with a
given direction. The transformation T ∗3 does not change the direction of the curve
γ. Therefore, the set Q of all fixed points T ∗3 γ = γ is the union of two intervals
with endpoints resting on one-point curves:

Q = Q+ ∪Q− ⊂ Ω̂+
1 (S2), T ∗3Q

+ = Q+, T ∗2Q
− = Q−,
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where Ω̂+
1 is the space of non-self-intersecting directed curves. The following obvious

but useful result holds.

Lemma 6. The gradient of any function invariant under a finite group of trans-
formations (in a metric also invariant under the same group) is tangential to the
set of fixed points.

The values of SE on both components of the boundary ∂Q+ = ∂Q− can be differ-
ent (one of them is zero) (the boundary consists of one-point curves), and δ2SE > 0
in a small neighhorbood of the one-point curves. Therefore, there is not less than
one maximum of the function SE bounded on each of the submanifolds Q+, Q−, or
not less than two critical points of index not less than 1 in the surrounding space
Ω̂+

1 (S2) for every energy E > maxU = U0.
We consider the general position case when all the critical points are nondegen-

erate. In the space Ω̂+
1 (S2)× (mod K0) (of one-point curves) there are two cycles

(one- and three-dimensional). It is possible to have critic points γ̃j outside Q, but
then a number of them must be repeated γ̃j 6= T ∗3 γ̃j ; here γ̃j and T ∗3 γ̃j have the
same Morse index. From here we obtain the following assertion.

Assertion. Among the plane sections of the sphere S2 orthogonal to an axis of
symmetry there is at least one periodic extremal for each direction of motion, the
Morse indexes of which are not equal to each other, and the value of SE on each is
positive (SE)(γ±) > 4π|s|).

Example 2. Let aij = aiiδij , bij = biiδij , and cij = ciiδij . Then the problem
admits the groupG = Z2×Z2. All three nonzero elements ofG are simply reflections
with respect to the orthogonal axes T1, T2 and T3 = T1T2 with T 2

i = 1. We apply
the preceding argument to all three transformations T ∗i that preserve the value of
SE . For E > maxU = U0 there are periodic extremals of the type of plane sections
of the sphere on all sets of fixed T ∗i Q

±
i = Q±

i , i = 1, 2, 3, for both directions of
motion (in all we obtain not less than six extremals for which SE(γ±i ) > 4π|s|).

Appendix

Leggett’s Equation for the Spin in the Superfluid 3He

The homogeneous states of the superfluid 3He in the so-called A and B phases
are described by a complex (3× 3) matrix Aij , i.e., by a point of one of the matrix
manifolds MA or MB :

1) A phase: Ajk = (const)·dj ·(∆′
k+i∆

′′
k), |d|2 = |∆′|2 = |∆′′|2 = 1, ∆′∆′′ = 0;

2) B phase: Ajk = (const) ·eiφ ·Rjk(θ, n̂), where Rij ∈ SO3, n̂ is the direction
of an axis, and θ is an angle of rotation about the n̂ axis.

In a state with nonzero spin s = (s1, s2, s3) in a magnetic field Bi, the energy
has the form

(1) H =
1
2
g2χijsisj − gBisi + V (Ajk),

where g = const, xij is the magnetic susceptibility tensor depending possibly on
Ajk, and V = V (Ajk) with Ajk ∈MA or Ajk ∈MB .

In the A phase case the tensor χij(d) usually has the form

(2) χijAsisj = χ−1
(∑

s2i

)
+ (const)

(∑
sidi

)2

,
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For the B phase case we assume the susceptibility tensor to be isotropic

(3) χijB = χ−1δij , χ = const.

The potential V (a dipole-dipole interaction) has the form

(4′) V = VA(d) = −c21(lidi)2

in the A-phase case, and

(4′′) V = VB(cos θ) = c22

(
1
2

+ 2 cos θ
)2

for the B phase, where 1 + 2 cos θ = Sp(Rjk) = Rjj . The vector l is assumed to
be constant, and c1 and c2 are certain constants. Note that for the A phase the
potential VA does not depend on the “orbital” variables ∆′ and ∆′′. The equations
of motion will be defined only for the pair (s, d) in the A-phase case. In the B-phase
case we consider an energy independent of the velocity potential φ, and shall discuss
the equations only in a state of hydrodynamic rest for the variables (si, Rjk). As
Golo, Fomin, and Volovik have remarked to the author, Leggett’s equations for the
A and B phases (neglecting viscosity) can be obtained from the Hamiltonian (1)
with respect to the following Poisson brackets:

(5′) 1) {si, sj} = εijksk, {si, dj} = εijkdk, {di, dj} = 0

for the A phase. Here d2 = 1 or d ∈ S2.

(5′′) 2) {si, sj} = εijksk, {Rlm, Rst} = 0, {si, Rjm} = εijkRkm

for the B phase. Here Rjk(θ, n̂) ∈ SO3, where

n̂2 = 1, Rjk = cos θδjk + (1− cos θ)n̂j n̂k + sin θεijkn̂i.

The Poisson brackets (5′) for the A phase correspond to the Lie algebra of E(3); the
Hamiltonian (1) has a form satisfying the conditions of Theorems 1 and 2 above.
Thus, we obtain the following conclusion: all the results of the preceding sections
about periodic orbits remain valid for Leggett’s equations in the A phase, provided
that viscosity is neglected. If we can regard viscosity as small (i.e., the influence
of the viscosity term on the period of rotation along an orbit is small), then we
obtain periodic orbits of a conservative system that are slowly losing energy as a
result of viscosity. We recall that we have proved the existence of periodic orbits
for all energy values greater than a threshold of the potential, and for all values of
the “Kirchhoff integrals” d2 = 1, (s, d) = const.

Now we turn to the B phase. The Poisson bracket (5′′) is simply the usual
Poisson bracket on T ∗(SO3) in the variables R ∈ SO3 and s∗ = ṘR−1, which give a
representation in the form of a direct product T ∗(SO3) = R3×SO3. Thus, Leggett’s
equation for the B phase in a magnetic field can be obtained from a Lagrangian
system on SO3. In view of results in Sec. 4 we establish the existence of periodic
orbits, at least one for each energy greater than threshold E > maxVB(R). We
can also obtain an analogue of the result in Sec. 1 about the appearance of a small
“saddle” orbit [E ∼ maxVB(R)] for magnetic fields greater than some threshold.
But this is too “small.”

Leggett’s system for the B phase in a zero magnetic field is exactly integrable
as was proved by Mackey and Ebisava in 1976 (see the survey by Brinkman and
Cross in [3]). In a nonzero magnetic field B 6= 0, Leggett’s system has only one
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redundant integral. Therefore, we must look for periodic orbits that depend on two
continual parameters—energy and the value of the integral (for B →∞ see [4]).

For a nonzero magnetic field the Hamiltonian H(s,R) has the form (1), (3). We
consider a general Hamiltonian of the form

(6) H =
1
2
s2 + V (cos θ),

where V is an arbitrary function.

Lemma. The system generated by the Hamiltonian (6) with the Poisson bracket
(5′′) is always completely integrable.

Proof. In fact, by definition we have
a) the quantity 1 + 2 cos θ = SpR = Rij is invariant under inner automor-

phisms;
b) the Killing metric s2 on the group SO3 is invariant under inner automor-

phisms (it is invariant under all right and left translations).
As a consequence of this, the Hamiltonian (6) and the corresponding Lagrangian

on SO3 are invariant under all inner automorphisms

(7) s→ gs′, s ∈ R3, R→ gRg−1, g ∈ SO3, R ∈ SO3.

The group of symmetries [the transformations (7)] generates the invariant vector

(8) A = (1− cos θ)
[
n̂×

(
ctg

θ

2
s+ [n̂× s]

)]
,

where Rjk = (1− cos θ)n̂j n̂k +cos θδjk +sin θεijkn̂i, θ is an angle of rotation about
the n̂ axis and

∑
n̂2
i = 1. This vector is given by Brinkman and Cross [3] as a

result of a direct formal conjecture.
In the work of Mackey and Ebisava (1976) (see [3]), where this problem is inte-

grated in a zero magnetic field, symmetry considerations are not discussed.
The Poisson brackets of the components of the vector A and the Hamiltonian

are zero:

(9) {Ai,H} = 0.

Since Ai is a generator of the group SO3 which acts by means of the representation
(7), we have the Poisson brackets

(10) {Ai, Aj} = εijkAk, {Ai, A2} = 0

(although the Ai are not moments of momentum). As a consequence of this, system
(6) is integrable (the integralsH, A1 and A2 commute). Moreover, the level surfaces
of the four integrals (H,A1, A2, A3) in general position are two-dimensional tori.
This proves the lemma. �

In a nonzero magnetic field (Bi) directed along the first axis (B1 = B, B2 =
B3 = 0), Leggett’s Hamiltonian reduces to the form

(11) H =
s2

2
+ λs1 + V (cos θ).

In a constant magnetic field there is as well as the energy H = E another integral
A1 = (const) · AiBi generated by the action (7) of the group of rotations around
the field

(12) A1 = −a sin θ + (1− cos θ)(s1 − s‖n̂1),
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where

(13) a = s2n̂3 − n̂2s3, s‖ = sin̂i.

By using the integral A1 we can “factorize the Hamiltonian formalism” (or the
Lagrangian) and go over a configuration space of the form M2 = SO3/SO2 (not to
be confused with a Hopf fibering). We recall that tbe action of SO2 on SO3 has
the form (7)

(14) R→ gRg−1, g ∈ SO2

(here g is a rotation about the first axis—the direction of the magnetic field B).
The situation here differs sharply from the A phase, the Kirchhoff problem, and
the classical top in an axisymmetric gravitational field: in the top problem the
factorization of the configuration space SO3 is performed [2] by using right trans-
lations from the subgroup of symmetries SO2, and always gives a Hopf fibering
with a base that is a two-dimensional sphere without singularities. In this case we
obtain a factor M2 = (a disk D2 with a boundary Γ = S1); the boundary contains
singular points. It is technically convenient to calculate the factor-system on M2

in the following way.
The quantities (s2, s‖, θ, s1, n = n̂1, a = [s × n̂]1 = s2n̂3 − n̂2s3) are invariant

under the transformations (14). In addition, there is a simple connection that
follows from elementary geometry

(15) s2a2 = (s2 − s21)(s
2 − s2‖)− (s2n− s1s‖)2.

Thus, the space of parameters (s2, s‖, s1, n, a, θ) is five-dimensional. Consequently,
there is a function of these parameters such that its Poisson bracket with all of
them vanishes.6 This function is A1:

(16)
A1 = A1(θ, a, s1, s‖, n),

{A1, s
2} = {A1, s‖} = {A1, θ} = {A1, n} = {A1, s1} = 0.

Deduction. Under the condition A1 = const we can use the earlier formulas for
the paired Poisson brackets of these parameters.

Simple calculations starting from (5′′) give the following result:

(17)
{s‖, θ} = 1, {θ, n} = 0, {f, s2} = 0, {f, θ} = 0, {f, σ‖} = 0,

{f, n} =

√
1
2
(1− n2)f − A2

1

4
, f = (s2 − s2‖)(1− cos θ) =

1
2

∑
A2
i =

1
2
A2.

Thus, on the level surface A1 the Poisson bracket (a 2-form) reduces to a canonical
form with the coordinates

(18)

(θ, n, pθ, pn), Ω = dθ ∧ dpθ + dn ∧ dpn, pθ = s‖,

pn =

√
2f

1− n2
− A2

1

(1− n2)2
.

6The closed subalgebra of the Poisson brackets of (s2, s‖, θ) was first discussed by V. L. Golo.

The collection of all parameters (15) gives a closed algebra of brackets.
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Hence, we obviously have

(19)

s2 = p2
θ +

1− n2

2(1− cos θ)

(
p2
n +

A2
1

(1− n2)2

)
,

H =
s2

2
+ λs1 + V (cos θ), 2f = (1− n2)p2

n +A2
1/(1− n2),

s1 = npθ +
1− n2

2
sin θ pn +A1

2− sin2 θ

2(1− cos θ)
.

By using (18) and (19) we obtain the following result in the variables χ = θ/2 and
n = sinφ.

Theorem. Leggett’s system in the B phase is equivalent to a Lagrangian system,
viz., a charged particle on the sphere S2 in an effective magnetic field. The La-
grangian has the form

(20) L = 2(χ̇2 + sin2 χφ̇)−Aχχ̇−Aφφ̇− U(χ, φ),

where

(21)

Aχ = 2λ sinφ, Aφ = 8λ cosφ sin3 χ cosχ,

U = V (cos θ) +
A2

1

4 sin2 χ cos2 φ
+
λA1(1− sin2 χ cos2 χ)

2 sin2 χ

−λ
2
(sin2 φ+ 4 cos2 φ sin3 χ cosχ).

The proof is given above.
For any A1 6= 0 the system has singularities on a great circle of the sphere:

(22) φ = ±π/2
and stronger singularities at the poles

(23) χ = 0, π.

Thus, when A1 6= 0 we always have a system on a manifold with an edge (a domain
on S2)

(24) U(χ, φ) 6 E.

This domain lies inside a great circle

(25) 0 < χ < π, −π/2 < φ < π/2

and is at a nonzero distance from the boundary.
For A1 = 0 the system is defined and is regular on the whole sphere S2 except

for the poles χ 6= 0, π, where the “effective magnetic field” and potential have
singularities.

If the magnetic field is zero (here λ = 0), then we have the integral 2f =
(4 sin2 χφ̇)2 +A2

1 cos−2 φ, which enables us at last to integrate the system.
In a zero magnetic field the system seems to be nonintegrable. A certain set of

periodic solutions of the original Leggett system (1), (4), (5) gives stationary solu-
tions of the factorized system in the coordinates (θ, n, pθ, pn) with the Hamiltonian
(19). For the condition for the factor-system to be stationary means that in the
original coordinates (si, Rjk) the solution is periodic and coincides with an orbit of
the group of symmetries—a 1-parameter group of rotations of the field that acts
on SO3 by the inner automorphisms (7).
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