На главную страницу
На главную страницу
На главную страницу
English page
English page
ФАНО России | РАН | ОМН РАН | Math-Net.Ru | ММО | Web of Science | Scopus | MathSciNet | zbMATH | Проверка почты | Справка 

   
 Об институте
 Научная деятельность
 Публикации
 Правила оформления научных работ
 Администрация
 Ученый совет
 Диссертационные советы
 Отделы
Сотрудники 
 Аспирантура
 Научно-образовательный центр
 Совет молодых ученых
 Профком МИАН
 Семинары
 Конференции
 Мероприятия
 Издания МИАН
 In memoriam
 Фотогалерея МИАН
 Музей МИАН
 Реквизиты МИАН
 Устав МИАН
 Библиотека


    Адрес института
Адрес: Россия, 119991, Москва, ул. Губкина, д. 8
Тел.: +7(495) 984 81 41
Факс: +7(495) 984 81 39
Сайт: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

Посмотреть карту
Схема проезда

   

Отдел теории функций

| Семинары отдела | История отдела | Направления исследований и основные результаты | Сотрудники отдела - лауреаты | Международные контакты | Публикации сотрудников отдела |
Сотрудники отдела
Бесов Олег Владимирович

доктор физ.-матем. наук, член-корр. РАН, заведующий отделом
комн.: 519; тел.: +7 (499) 941 01 89, +7 (495) 984 81 41 * 36 67;
e-mail: besov@mi.ras.ru
Персональная страница: http://www.mi.ras.ru/~besov/
Основные направления исследований: Функциональные пространства, теоремы вложения, приближения классов функций.
Бесов Олег Владимирович
Бочкарев Сергей Викторович

доктор физ.-матем. наук, ведущий научный сотрудник
комн.: 503; тел.: +7 (495) 984 81 41 * 37 89;
e-mail: bochkarv@mi.ras.ru
Основные направления исследований: Тригонометрические и ортогональные ряды, функциональные пространства, базисы, сходимость почти всюду.
Бочкарев Сергей Викторович
Волков Евгений Алексеевич

доктор физ.-матем. наук, профессор, ведущий научный сотрудник
комн.: 502; тел.: +7 (495) 984 81 41 * 37 88, +7 (495) 984 81 41 * 36 64;
Основные направления исследований: Дифференциальные уравнения, разностные методы, блочный экспоненциально сходящийся метод решения краевых задач для уравнения Лапласа на многоугольниках и конформного отображения многосвязанных круговых многоугольников на канонические области.
Волков Евгений Алексеевич
Кашин Борис Сергеевич

доктор физ.-матем. наук, профессор, академик РАН, главный научный сотрудник
комн.: 517; тел.: +7 (495) 984 81 41 * 37 84;
e-mail: kashin@mi.ras.ru
Персональная страница: http://www.mi.ras.ru/~kashin
Основные направления исследований: Теория ортогональных рядов, геометрия выпуклых тел, теория операторов, теория аппроксимации.
Кашин Борис Сергеевич
Малыхин Юрий Вячеславович

кандидат физ.-матем. наук, старший научный сотрудник
комн.: 502; тел.: +7 (495) 984 81 41 * 37 88, +7 (495) 984 81 41 * 36 64;
e-mail: malykhin@mi.ras.ru
Основные направления исследований: теория машинного обучения,теория приближений.
Малыхин Юрий Вячеславович
Теляковский Сергей Александрович

доктор физ.-матем. наук, профессор, ведущий научный сотрудник
комн.: 502; тел.: +7 (495) 984 81 41 * 37 88, +7 (495) 984 81 41 * 36 64;
e-mail: SergeyAltel@yandex.ru
Основные направления исследований: Приближение функций, специальные тригонометрические ряды, экстремальные свойства, функции ограниченной вариации, поперечники.
Теляковский Сергей Александрович
Тюленев Александр Иванович

кандидат физ.-матем. наук, научный сотрудник

e-mail: tyulenev@mi.ras.ru

Буренков Виктор Иванович

доктор физ.-матем. наук, профессор, внештатный сотрудник

e-mail: burenkov@cardiff.ac.uk
Персональная страница: http://www.enu.kz/ru/lica-enu/burenkov-viktor-ivanovich/
Осколков Константин Ильич

доктор физ.-матем. наук, профессор, внештатный сотрудник

e-mail: oskolkov@math.sc.edu
Персональная страница: http://www.math.sc.edu/konstantin-oskolkov
Степанов Владимир Дмитриевич

доктор физ.-матем. наук, профессор, член-корр. РАН, внештатный сотрудник

e-mail: stepanov@mi.ras.ru
Темляков Владимир Николаевич

доктор физ.-матем. наук, профессор, внештатный сотрудник

e-mail: temlyak@math.sc.edu
Персональная страница: http://www.math.sc.edu/people/temlyakov.html

Кудрявцев Лев Дмитриевич (25.03.1923 – 17.02.2012)

доктор физ.-матем. наук, член-корр. РАН

Основные направления исследований: Топология, теория функций, теоремы вложения, дифференциальные уравнения, асимптотика.
Никольский Сергей Михайлович (30.04.1905 – 9.11.2012)

доктор физ.-матем. наук, академик РАН

Основные направления исследований: Анализ, приближение функций, вариационный метод, краевые задачи.
Похожаев Станислав Иванович (24.08.1935 – 30.01.2014)

доктор физ.-матем. наук, член-корр. РАН

Персональная страница: http://www.mi.ras.ru/~pokhozhaev
Основные направления исследований: Нелинейный анализ, нелинейные уравнения с частными производными, нелинейные вариационные задачи.
Наверх
Семинары отдела
Семинар по теории функций многих действительных переменных и ее приложениям к задачам математической физики (Семинар Никольского)
Руководитель семинара: О. В. Бесов
МИАН, комн. 530 (ул. Губкина, 8)
Семинар по теории приближений
Руководитель семинара: С. А. Теляковский
МИАН, комн. 502 (ул. Губкина, 8)
Наверх
История отдела

Отдел теории функций был организован в 1934 году на основе одноименного подразделения бывшего Физико-математического института АН СССР, который после переезда из Ленинграда в Москву разделился на два научных учреждения: Математический институт АН СССР им. В. А. Стеклова и Физический институт АН СССР им. П. Н. Лебедева. Отдел сразу же стал одним из основных научных центров в мире по теории функций и остается таковым поныне. В нем ведутся исследования по классическим и новым вопросам математического анализа, cоздаются и разрабатываются новые методы решения актуальных задач теории функций. Итоги многих исследований находятся на уровне лучших мировых достижений и часто предопределяют развитие математики в этой области, так как имеют основополагающее значение.

Первыми заведующими отдела в разные годы были всемирно известные ученые — академики Н. Н. Лузин, М. А. Лаврентьев, С. М. Никольский.

Н. Н. Лузин является основателем большой математической школы. Его труды по теории тригонометрических рядов, метрической теории функций и теории функций комплексного переменного давно уже стали классическими. Их с большим успехом развивали сотрудники отдела — его ученики и последователи: академики Б. С. Кашин, П. С. Новиков, П. Л. Ульянов, члены-корреспонденты АН СССР — Л. В. Келдыш, Д. Е. Меньшов, доктора физ.-матем. наук С. В. Бочкарев, К. И. Осколков, С. А. Теляковский, В. Н. Темляков. Н. Н. Лузин — один из создателей дескриптивной теории функций. Особенно важно отметить открытие им проективных множеств. В дальнейшем подтвердилось его мнение о том, что для этих множеств не может быть решен (в классическом смысле) ряд задач, в частности, вопрос об их измеримости. Эти работы стимулировали исследования в области математической логики (П. С. Новиков).

Д. Е. Меньшов работал в отделе с первых дней его создания. Он разрабатывал теорию тригонометрических и ортогональных рядов, а также теорию моногенных функций и конформных отображений. В 1951 г. ему за фундаментальные исследования по проблеме представления функций тригонометрическими рядами была присуждена Государственная премия, а в 1975 г. — академическая премия им. П. Л. Чебышева за работы по суммированию тригонометрических рядов.

М. А. Лаврентьев разработал вариационные принципы конформных отображений, получил ряд фундаментальных результатов по граничным свойствам аналитических функций и приближению непрерывных функций многочленами в комплексной области. Он решил ряд основных задач теории квазиконформных отображений, за что в 1946 г. получил Государственную, а в 1958 г. — Ленинскую премии. Его ученик — член-корреспондент АН СССР А. В. Бицадзе, применив методы теории функций комплексного переменного, решил ряд принципиально важных трудных задач теории уравнений с частными производными, в том числе и смешанного типа. Член-корреспондент АН СССР А. Ф. Леонтьев разработал теорию рядов экспонент.

Интенсивно развивалась в отделе теория приближений функций. В этом направлении работали академики: С. Н. Бернштейн, А. А. Гончар, М. В. Келдыш, М. А. Лаврентьев, С. М. Никольский, член-корреспондент АН СССР С. Н. Мергелян и др. В 1942 г. С. Н. Бернштейну за фундаментальные результаты по теории приближения функций была присуждена Государственная премия.

В 1952 г. С. Н. Мергеляну за работы по наилучшим приближениям многочленами функций комплексного переменного была присуждена Государственная премия.

В 1948–1957 годах из отдела теории функций выделился отдел конструктивной теории функций, который возглавил академик С. Н. Бернштейн.

В 1960–1988 гг. отделом заведывал академик С. М. Никольский, в 1988–1994 г. — член-корреспондент РАН Л. Д. Кудрявцев, с 1994 г. отделом заведует член-корреспондент РАН О. В. Бесов. В настоящее время, кроме них, в отделе работают академик Б. С. Кашин, члены-корреспонденты РАН С. В. Конягин, С. И. Похожаев, доктора физико-математических наук С. В. Бочкарев, Е. А. Волков, С. А. Теляковский; кандидат физико-математических наук Ю. В. Малыхин.

Более 45 лет при отделе работает организованный С. М. Никольским и получивший мировое признание научно-исследовательский семинар по теории дифференцируемых функций многих переменных. В настоящее время им руководит С. М. Никольский. В число его руководителей в разные годы входили также В. И. Кондрашов, Л. Д. Кудрявцев и С. Л. Соболев.

Наверх
Направления исследований и основные результаты

В своих работах С. М. Никольский установил связь между гладкостью функций, их приближениями и вложениями классов функций и впервые получил замкнутую теорию вложения функциональных пространств. Эти труды послужили началом глубоких исследований в теории дифференцируемых функций многих переменных в ее приложениях к вариационным методам (С. М. Никольский и его ученики: О. В. Бесов, Л. Д. Кудрявцев, П. И. Лизоркин). В 1972 г. С. М. Никольский получил академическую премию им. П. Л. Чебышева за монографию «Приближение функций многих переменных и теоремы вложения», а в 1977 г. О. В. Бесову, В. И. Ильину и С. М. Никольскому была присуждена Государственная премия за монографию «Интегральные представления функций и теоремы вложения».

В отделе была разработана теория вложений функциональных пространств дифференцируемых функций (О. В. Бесов, Л. Д. Кудрявцев, П. И. Лизоркин, С. М. Никольский). За исследование проблем краевых задач для дифференциальных операторов и их приложений в математической физике академику О. А. Олейник и члену-корреспонденту РАН Л. Д. Кудрявцеву в 1988 г. присуждена Государственная премия СССР. В 1952 г. О. А. Олейник присуждена премия АН СССР им. Н. Г. Чеботарева; в 1964 г. — премия им. М. В. Ломоносова за исследования по математическим проблемам теории пограничного слоя; в 1995 г. — премия РАН им. И. Г. Петровского за исследования по асимптотическим методам в математической физике.

В отделе активно развивалась теория ортогональных рядов, в частности:

  • были начаты разносторонние исследования рядов по системе Хаара и их приложениям (П. Л. Ульянов);
  • получены важные результаты по проблемам сходимости и суммируемости рядов Фурье по классическим и общим ортонормированным системам (С. В. Бочкарев, Б. С. Кашин, К. И. Осколков, С. Б. Стечкин, С. А. Теляковский, П. Л. Ульянов);
  • решен ряд принципиальных вопросов построения базисов в функциональных пространствах (С. В. Бочкарев);
  • по теоретическим задачам теории наилучших приближений в банаховых пространствах (С. Б. Стечкин), по определению поперечников классов функций (Б. С. Кашин, С. Б. Стечкин, В. Н. Темляков),
  • по приближению функций многих переменных гармоническими многочленами и билинейными формами (П. И. Лизоркин, С. М. Никольский, В. Н. Темляков);
  • разработаны вероятностные (С. В. Бочкарев, Б. С. Кашин) и геометрические (Б. С. Кашин) методы исследования ортогональных рядов и приближений функций.

Глубокие исследования были проведены по теории представления групп, спектральной теории линейных операторов и функциональному анализу (М. А. Наймарк).

В 1993 г. П. Л. Ульянову за исследования по метрической теории функций присуждена Государственная премия России.

В вопросах численного анализа получены новые оценки для погрешностей квадратурных и кубатурных формул (С. М. Никольский, С. Л. Соболев).

Получены оценки сходимости разностных приближенных методов решения краевых задач для уравнений Лапласа и Пуассона; разработан блочный экспоненциально сходящийся метод решения краевых задач для уравнения Лапласа на многоугольниках и конформного отображения многосвязанных круговых многоугольников на канонические области (Е. А. Волков).

В 1984–1989 гг. в отделе работал академик С. Л. Соболев. В это время он завершил переработку своей классической монографии «Некоторые применения функционального анализа в математической физике».

В области нелинейного анализа разработан новый конструктивный метод вариационного исчисления — метод глобального расслоения, на основании которого установлена разрешимость широкого класса существенно нелинейных эллиптических задач. На основании вариационных «тождеств Похожаева» изучена разрешимость эллиптических задач во всем пространстве с суперкритическим показателем нелинейности. На основании нового понятия «нелинейной емкости» создана общая теория отсутствия решений нелинейных задач эллиптических, параболических и гиперболических типов, включая многомерные нелинейные гиперболические уравнения (член-корреспондент РАН С. И. Похожаев).

Проведены исследования по спектральной теории как самосопряженных, так и несамосопряженных дифференциальных операторов, по проблемам сходимости спектральных разложений и по связи этой теории с проблемой полной интегрируемости нелинейных дифференциальных уравнений (академик В. А. Ильин).

Проведены исследования асимптотических свойств нелинейных уравнений с частными производными (академик О. А. Олейник).

Разработана теория усреднения дифференциальных операторов и ее приложения в физике, механике и инженерных науках (академик О. А. Олейник).

Наверх
Сотрудники отдела - лауреаты

Сотрудники отдела удостоены следующих государственных и академических наград:

С. М. Никольский
Государственная премия СССР - 1952 г.
премия им. П. Л. Чебышева - 1972 г.
Золотая медаль им. И. М. Виноградова - 1985 г.
Государственная премия Украины - 1994 г.
премия им. А. Н. Колмогорова - 2000 г.
премия им. М. В. Остроградского НАН Украины - 2000 г.
О. В. Бесов, В. П. Ильин, С. М. Никольский
Государственная премия СССР - 1977 г.
Я. С. Бугров, С. М. Никольский
Государственная премия СССР - 1987 г.
Ю. В. Егоров, В. А. Кондратьев, Л. Д. Кудрявцев, О. А. Олейник
Государственная премия СССР - 1988 г.
Л. Д. Кудрявцев
премия Московского математического общества - 1954 г.
О. В. Бесов
премия Московского математического общества - 1960 г.
С. В. Бочкарев
Международная премия по математике им. Р. Салема - 1977 г.
Е. А. Волков
премия Отделения математики АН СССР - 1988 г.
премия за лучшую публикацию в изданиях МАИК "Наука" - 1998 г.
Б. С. Кашин
премия Московского математического общества - 1988 г.
С. А. Теляковский
премия конкурса РФФИ научно-популярных статей - 1998 г.

Наверх
Международные контакты

Сотрудники отдела неоднократно выступали на международных математических конгрессах в качестве приглашенных докладчиков:

С. М. Никольский (Амстердам, 1954 г.)
А. А. Гончар (Москва, 1966 г.)
П. Л. Ульянов (Ницца, 1970 г.)
С. В. Бочкарев (Хельсинки, 1978 г.)
Б. С. Кашин (Варшава, 1983 г.)

Наверх
Публикации сотрудников отдела за последние годы

Штатные сотрудники МИАН Штатные и внештатные сотрудники МИАН
| по годам | научные публикации | по типам |


1. С. А. Теляковский, “О сходимости рядов блоков членов рядов Фурье функций двух переменных ограниченной вариации”, Матем. заметки (в печати)  mathnet
2. A. I. Tyulenev, S. K. Vodop'yanov, On a Whitney-type problem for weighted Sobolev spaces on $d$-thick closed sets , arXiv: 1606.06749

   2017
3. О. В. Бесов, “Еще о вложении пространства Соболева для предельного показателя”, Матем. заметки, 101:4 (2017), 503–515  mathnet  crossref  mathscinet  elib; O. V. Besov, “Another Note on the Embedding of the Sobolev Space for the Limiting Exponent”, Math. Notes, 101:4 (2017), 608–618  crossref  mathscinet  isi  scopus
4. Б. С. Кашин, “О разбиении ортогональной матрицы на две подматрицы с экстремально малой $(2,1)$-нормой”, УМН, 72:5(437) (2017), 193–194  mathnet  crossref  mathscinet  elib
5. Ю. В. Малыхин, К. С. Рютин, “Произведение октаэдров плохо приближается в метрике $\ell_{2,1}$”, Матем. заметки, 101:1 (2017), 85–90  mathnet  crossref  mathscinet  elib; Yu. V. Malykhin, K. S. Ryutin, “The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric”, Math. Notes, 101:1 (2017), 94–99  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
6. Yu. V. Malykhin, E. V. Shchepin, “Chain development of metric compacts”, Topology Appl., 221 (2017), 624–629 , arXiv: 1604.00848  mathnet  crossref  isi  scopus
7. E. S. Belkina, Y. V. Malykhin, “Fourier coefficients of continuous functions with respect to localized Haar system”, Пробл. анал. Issues Anal., 6(24):1 (2017), 11–18  mathnet  crossref  elib  scopus
8. A. I. Tyulenev, “On various approaches to Besov-type spaces of variable smoothness”, J. Math. Anal. Appl., 451:1 (2017), 371–392  mathnet  crossref  isi  scopus (cited: 1)
9. А. И. Тюленев, С. К. Водопьянов, “О проблеме Уитни для весовых пространств Соболева”, Докл. РАН, 472:6 (2017), 634–638  mathnet  crossref  elib; A. I. Tyulenev, S. K. Vodop'yanov, “On the Whitney Problem for Weighted Sobolev Spaces”, Dokl. Math., 95:1 (2017), 79–83  crossref  isi  scopus

   2016
10. С. А. Теляковский, “О скорости сходимости в $L$ рядов Фурье по синусам с монотонными коэффициентами”, Матем. заметки, 100:3 (2016), 450–454  mathnet  crossref  mathscinet  zmath  elib; S. A. Telyakovskii, “On the Rate of Convergence in $L$ of Fourier Sine Series with Monotone Coefficients”, Math. Notes, 100:3 (2016), 472–476  crossref  mathscinet  zmath  isi  elib  scopus
11. Ю. Н. Субботин, С. А. Теляковский, “Равномерная аппроксимация кривизны гладких плоских кривых”, Тр. ИММ УрО РАН, 22, № 4, 2016, 254–256  mathnet  crossref  mathscinet  elib
12. О. В. Бесов, “Пространства функций положительной гладкости на нерегулярных областях”, Докл. РАН, 466:2 (2016), 133–136  mathnet (цит.: 2)  crossref  mathscinet  zmath  elib (цит.: 1); O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Dokl. Math., 93:1 (2016), 13–15  crossref  mathscinet  zmath  isi (cited: 3)  elib  scopus (cited: 1)
13. О. В. Бесов, “Пространства функций положительной гладкости на нерегулярных областях”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 293, МАИК, М., 2016, 62–72  mathnet (цит.: 2)  crossref  mathscinet  elib; O. V. Besov, “Spaces of functions of positive smoothness on irregular domains”, Proc. Steklov Inst. Math., 293 (2016), 56–66  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 1)
14. О. В. Бесов, “Еще о вложении пространства Соболева для предельного показателя”, Докл. РАН, 471:6 (2016), 631–634  mathnet  crossref  elib; O. V. Besov, “Embedding of Sobolev spaces with limit exponent revisited”, Dokl. Math., 94:3 (2016), 684–687  crossref  isi  scopus
15. Б. С. Кашин, “О двоичных аналогах матриц Гильберта”, УМН, 71:6(432) (2016), 155–156  mathnet  crossref  mathscinet  zmath  elib; B. S. Kashin, “Dyadic analogues of Hilbert matrices”, Russian Math. Surveys, 71:6 (2016), 1135–1136  crossref  mathscinet  zmath  isi  scopus
16. E. A. Volkov, A. A. Dosiyev, “On the numerical solution of a multilevel nonlocal problem”, Mediterr. J. Math., 13:5 (2016), 3589–3604  mathnet  crossref  mathscinet  zmath  isi  elib  scopus (cited: 1)
17. Ю. В. Малыхин, “Относительные поперечники классов Соболева в равномерной и интегральной метриках”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Тр. МИАН, 293, МАИК, М., 2016, 217–223  mathnet (цит.: 1)  crossref  mathscinet  elib; Yu. V. Malykhin, “Relative widths of Sobolev classes in the uniform and integral metrics”, Proc. Steklov Inst. Math., 293 (2016), 209–215  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 1)
18. A. I. Tyulenev, “Besov-type spaces of variable smoothness on rough domains”, Nonlinear Anal., 145 (2016), 176–198  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus (cited: 2)

   2015
19. Ю. Н. Субботин, С. А. Теляковский, “О нормах ядер Фавара”, Матем. заметки, 97:4 (2015), 583–590  mathnet  crossref  mathscinet  zmath  elib; Yu. N. Subbotin, S. A. Telyakovskii, “On the Norms of Favard Kernels”, Math. Notes, 97:4 (2015), 598–604  crossref  mathscinet  zmath  isi  elib  scopus
20. С. А. Теляковский, “О коэффициентах рядов Фурье, сходящихся в $L$”, Матем. заметки, 98:1 (2015), 156–157  mathnet  crossref  mathscinet  elib; S. A. Telyakovskii, “On the Coefficients of Fourier Series Convergent in $L$”, Math. Notes, 98:1 (2015), 189–191  crossref  mathscinet  isi  elib  scopus
21. Ю. В. Малыхин, С. А. Теляковский, Н. Н. Холщевникова, “Интегрируемость суммы модулей блоков рядов Фурье–Уолша функций ограниченной вариации”, Современные проблемы математики, механики и математической физики, Сборник статей, Тр. МИАН, 290, МАИК, М., 2015, 323–334  mathnet  crossref  elib; Yu. V. Malykhin, S. A. Telyakovskii, N. N. Kholshchevnikova, “Integrability of the Sum of Absolute Values of Blocks of the Fourier–Walsh Series for Functions of Bounded Variation”, Proc. Steklov Inst. Math., 290 (2015), 306–317  crossref  isi (cited: 1)  elib  scopus (cited: 1)
22. С. А. Теляковский, “Добавление к работе В. П. Заставного “Оценки сумм из модулей блоков тригонометрических рядов Фурье””, Тр. ИММ УрО РАН, 21, № 4, 2015, 277–281  mathnet (цит.: 1)  elib; S. A. Telyakovskii, “An addition to V.P. Zastavnyi's paper “Estimates for sums of moduli of blocks in trigonometric Fourier series””, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 186–190  crossref  isi  scopus
23. С. А. Теляковский, “О свойствах рядов из модулей блоков тригонометрического ряда”, Материалы международной научной конференции «Теория приближений функций и родственные задачи анализа», посвященной памяти доктора физико-математических наук, профессора П. П. Коровкина (Калуга, 09–10 октября 2015 г.), Изд-во Калужского государственного университета имени К. Э. Циолковского, Калуга, 2015, 71–72  elib
24. О. В. Бесов, “Вложение пространства Соболева в случае предельного показателя”, Докл. РАН, 462:2 (2015), 131–134  mathnet (цит.: 1)  crossref  mathscinet  zmath  elib; O. V. Besov, “Embeddings of Sobolev spaces in the case of the limit exponent”, Dokl. Math., 91:3 (2015), 277–280  crossref  mathscinet  zmath  isi  elib  scopus
25. О. В. Бесов, “Вложение весового пространства Соболева и свойства области”, Избранные вопросы математики и механики, Сборник статей. К 150-летию со дня рождения академика Владимира Андреевича Стеклова, Тр. МИАН, 289, МАИК, М., 2015, 107–114  mathnet (цит.: 4)  crossref  elib (цит.: 1); O. V. Besov, “Embedding of a Weighted Sobolev Space and Properties of the Domain”, Proc. Steklov Inst. Math., 289 (2015), 96–103  crossref  isi (cited: 4)  elib (cited: 1)  scopus (cited: 2)
26. О. В. Бесов, “Вложение пространства Соболева в случае предельного показателя”, Матем. заметки, 98:4 (2015), 498–510  mathnet (цит.: 2)  crossref  mathscinet  elib; O. V. Besov, “Embedding of Sobolev Space in the Case of the Limit Exponent”, Math. Notes, 98:4 (2015), 550–560  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 1)
27. С. В. Бочкарев, “Абстрактная теорема Колмогорова, приложение к метрическим пространствам и топологическим группам”, Докл. РАН, 462:6 (2015), 633–636  mathnet  crossref  mathscinet  zmath  elib; S. V. Bochkarev, “Kolmogorov’s abstract theorem: Application to metric spaces and topological groups”, Dokl. Math., 91:3 (2015), 367–370  crossref  mathscinet  zmath  isi  elib  scopus
28. Б. С. Кашин, “О методе Лунина нахождения больших подматриц с малой нормой”, Матем. сб., 206:7 (2015), 95–102  mathnet (цит.: 2)  crossref  mathscinet  zmath  adsnasa  elib (цит.: 1); B. S. Kashin, “Lunin's method for selecting large submatrices with small norm”, Sb. Math., 206:7 (2015), 980–987  crossref  mathscinet  zmath  isi (cited: 1)  hlocal  elib  scopus (cited: 1)
29. Ю. В. Малыхин, Е. В. Щепин, “Цепная развертка”, Современные проблемы математики, механики и математической физики, Сборник статей, Тр. МИАН, 290, МАИК, М., 2015, 317–322  mathnet (цит.: 1)  crossref  elib; Yu. V. Malykhin, E. V. Shchepin, “Chain Development”, Proc. Steklov Inst. Math., 290 (2015), 300–305  crossref  isi (cited: 1)  elib  scopus (cited: 1)
30. А. И. Тюленев, “О некоторых новых пространствах функций переменной гладкости”, Матем. сб., 206:6 (2015), 85–128  mathnet (цит.: 3)  crossref  mathscinet (цит.: 2)  zmath  adsnasa  elib; A. I. Tyulenev, “Some new function spaces of variable smoothness”, Sb. Math., 206:6 (2015), 849–891  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 1)  scopus (cited: 3)
31. A. I. Tyulenev, “Traces of weighted Sobolev spaces with Muckenhoupt weight. The case $p=1$”, Nonlinear Anal., 128 (2015), 248–272  mathnet  crossref  mathscinet (cited: 1)  isi (cited: 4)  elib  scopus (cited: 4)

   2014
32. С. А. Теляковский, “О ряде из модулей блоков членов тригонометрических рядов”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Тр. МИАН, 284, МАИК, М., 2014, 243–251  mathnet (цит.: 1)  crossref  elib (цит.: 1); S. A. Telyakovskii, “On the Series of Absolute Values of Blocks of Trigonometric Series”, Proc. Steklov Inst. Math., 284 (2014), 235–243  crossref  isi  elib  scopus
33. О. В. Бесов, “К теореме вложения Соболева для предельного показателя”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Тр. МИАН, 284, МАИК, М., 2014, 89–104  mathnet (цит.: 5)  crossref  elib (цит.: 1); O. V. Besov, “To the Sobolev Embedding Theorem for the Limiting Exponent”, Proc. Steklov Inst. Math., 284 (2014), 81–96  crossref  isi (cited: 5)  elib (cited: 3)  scopus (cited: 3)
34. О. В. Бесов, “Вложение пространства Соболева и свойства области”, Матем. заметки, 96:3 (2014), 343–349  mathnet (цит.: 8)  crossref  mathscinet  zmath  elib (цит.: 4); O. V. Besov, “Embedding of Sobolev spaces and properties of the domain”, Math. Notes, 96:3 (2014), 326–331  crossref  mathscinet  zmath  isi (cited: 8)  elib (cited: 2)  scopus (cited: 3)
35. О. В. Бесов, “Вложение весового пространства Соболева и свойства области”, Докл. РАН, 459:6 (2014), 663–666  mathnet (цит.: 1)  crossref  mathscinet  zmath  elib (цит.: 1); O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Dokl. Math., 90:3 (2014), 754–757  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus
36. V. A. Galaktionov, E. Mitidieri, S. I. Pohozaev, “Classification of global and blow-up sign-changing solutions of a semilinear heat equation in the subcritical Fujita range: second-order diffusion”, Adv. Nonlinear Stud., 14:1 (2014), 1–29  mathnet  crossref  mathscinet (cited: 3)  zmath  isi (cited: 4)  elib (cited: 3)  scopus (cited: 5)
37. С. И. Похожаев, “Гладкие решения уравнений Навье–Стокса”, Матем. сб., 205:2 (2014), 131–144  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  zmath  adsnasa  elib (цит.: 1); S. I. Pokhozhaev, “Smooth solutions of the Navier-Stokes equations”, Sb. Math., 205:2 (2014), 277–290  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
38. V. A. Galaktionov, E. L. Mitidieri, S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schroedinger equations, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2014 , 568 pp.  crossref  zmath  isi
39. С. В. Бочкарев, “Средние Валле Пуссена рядов Фурье для квадратичного спектра и спектров степенной плотности”, УМН, 69:1(415) (2014), 125–162  mathnet (цит.: 1)  crossref  mathscinet  zmath  adsnasa  elib; S. V. Bochkarev, “de la Vallée-Poussin means of Fourier series for the quadratic spectrum and for spectra with power-like density”, Russian Math. Surveys, 69:1 (2014), 119–152  crossref  mathscinet  zmath  isi  elib  scopus
40. Б. С. Кашин, “Об одном специальном ортогональном разложении пространства $L^2(0,1)$”, Матем. заметки, 95:4 (2014), 635–637  mathnet (цит.: 1)  crossref  mathscinet  elib; B. S. Kashin, “On a Special Orthogonal Decomposition of the Space $L^2(0,1)$”, Math. Notes, 95:4 (2014), 570–572  crossref  mathscinet  isi (cited: 1)  hlocal  elib (cited: 1)  scopus (cited: 1)
41. Б. С. Кашин, А. В. Мелешкина, “Об $n$-членных приближениях по фреймам, ограниченным в $L^p(0,1)$, $2<p<\infty$”, Матем. заметки, 95:6 (2014), 830–835  mathnet (цит.: 1)  crossref  mathscinet  elib (цит.: 2); B. S. Kashin, A. V. Meleshkina, “On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2<p<\infty$”, Math. Notes, 95:6 (2014), 775–779  crossref  mathscinet  isi (cited: 2)  hlocal  elib  scopus
42. Ю. В. Малыхин, К. С. Рютин, “О концентрации $L_1$-нормы тригонометрических полиномов и целых функций”, Матем. сб., 205:11 (2014), 95–124  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  zmath  adsnasa  elib (цит.: 1); Yu. V. Malykhin, K. S. Ryutin, “Concentration of the $L_1$-norm of trigonometric polynomials and entire functions”, Sb. Math., 205:11 (2014), 1620–1649  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus
43. Ю. В. Малыхин, “Асимптотические свойства чебышëвских сплайнов с фиксированным числом узлов”, Фундамент. и прикл. матем., 19:5 (2014), 143–166  mathnet  mathscinet; Yu. V. Malykhin, “Asymptotic properties of Chebyshev splines with fixed number of knots”, J. Math. Sci., 218:5 (2016), 647–663  crossref  mathscinet  elib
44. А. И. Тюленев, “Описание следов функций из пространства Соболева с весом из класса Макенхаупта”, Тр. МИАН, 284 (2014), 288–303  mathnet (цит.: 5)  crossref  mathscinet  zmath  zmath  elib (цит.: 2); A. I. Tyulenev, “Description of Traces of Functions in the Sobolev Space with a Muckenhoupt Weight”, Proc. Steklov Inst. Math., 284 (2014), 280–295  crossref  mathscinet  zmath  zmath  isi (cited: 6)  elib (cited: 4)  scopus (cited: 6)
45. А. И. Тюленев, “Граничные значения функций из пространства Соболева с весом из класса Макенхаупта на некоторых нелипшицевых областях”, Матем. сб., 205:8 (2014), 67–94  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  zmath  adsnasa  elib; A. I. Tyulenev, “Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains”, Sb. Math., 205:8 (2014), 1133–1159  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)
46. А. И. Тюленев, “Граничные значения функций из пространства Соболева с весом из класса Макенхаупта на некоторых нелипшицевых областях”, Докл. РАН, 456:4 (2014), 408–412  mathnet  crossref  mathscinet  zmath  zmath  elib; A. I. Tyulenev, “Boundary values of functions from Sobolev spaces with Mockenhaupt weight on non-Lipschitz domains”, Dokl. Math., 89:3 (2014), 338–342  crossref  mathscinet  zmath  zmath  isi  elib  scopus
47. А. И. Тюленев, Граничные значения весовых пространств Соболева, Дис. … канд. физ.-матем. наук, М., 2014  elib

   2013
48. А. Ю. Попов, С. А. Теляковский, “Оценка интеграла от модуля суммы ряда по синусам с монотонными коэффициентами”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Тр. МИАН, 280, МАИК, М., 2013, 270–274  mathnet  crossref  mathscinet  elib; A. Yu. Popov, S. A. Telyakovskii, “Estimate for the integral of the absolute value of a sine series with monotone coefficients”, Proc. Steklov Inst. Math., 280 (2013), 263–267  crossref  mathscinet  isi  elib  scopus
49. С. А. Теляковский, Курс лекций по математическому анализу. Семестр III, Лекц. курсы НОЦ, 20, МИАН, М., 2013 , 242 с.  mathnet  mathnet  mathnet  crossref  zmath  elib
50. С. А. Теляковский, “О свойствах модулей блоков членов ряда $\sum \frac{1}{k} \sin kx$”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 13:1(2) (2013), 92–95  mathnet (цит.: 1)
51. С. А. Теляковский, “Об ограниченности ряда из модулей блоков членов рядов по синусам”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Тр. МИАН, 283, МАИК, М., 2013, 252–256  mathnet (цит.: 2)  crossref  mathscinet  elib (цит.: 3); S. A. Telyakovskii, “Boundedness of the Series of Absolute Values of Blocks of Sine Series”, Proc. Steklov Inst. Math., 283 (2013), 245–249  crossref  mathscinet  isi (cited: 1)
52. С. А. Теляковский, “Ряды из модулей блоков членов тригонометрического ряда (обзор)”, Фундамент. и прикл. матем., 18:5 (2013), 209–216  mathnet  mathscinet  elib; S. A. Telyakovskii, “Series formed by the moduli of blocks of terms of trigonometric series. A survey”, J. Math. Sci., 209:1 (2015), 152–158  crossref  mathscinet  elib  scopus
53. С. А. Теляковский, “О признаке Гаусса сходимости рядов”, Математика в высшем образовании, 2013, № 11, 43–44  mathnet
54. О. В. Бесов, “О колмогоровских поперечниках классов Соболева на нерегулярной области”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Тр. МИАН, 280, МАИК, М., 2013, 41–52  mathnet (цит.: 6)  crossref  mathscinet (цит.: 6)  elib (цит.: 1); O. V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Proc. Steklov Inst. Math., 280 (2013), 34–45  crossref  mathscinet  isi (cited: 6)  elib (cited: 4)  scopus (cited: 4)
55. О. В. Бесов, “К теореме вложения Соболева для предельного показателя”, Труды Международной научно-практической конференции «Теория функций, функциональный анализ и их приложения» (Семей, Казахстан, 3–5 октября 2013 г.), Государственный университет им. Шакарима, 2013, 20-25
56. С. И. Похожаев, “Отсутствие глобальных решений нелинейных эволюционных уравнений”, Дифференц. уравнения, 49:5 (2013), 625–632  mathnet (цит.: 1)  crossref  mathscinet  zmath  elib; S. I. Pokhozhaev, “Nonexistence of global solutions of nonlinear evolution equations”, Differ. Equ., 49:5 (2013), 599–606  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 5)  scopus (cited: 7)
57. S. I. Pokhozhaev, “Critical nonlinearities in partial differential equations”, Russ. J. Math. Phys., 20:4 (2013), 476–491  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
58. Е. А. Волков, “Приближенное решение методом сеток нелокальной краевой задачи для уравнения Лапласа на прямоугольнике”, Ж. вычисл. матем. и матем. физ., 53:8 (2013), 1302–1313  mathnet (цит.: 2)  crossref  mathscinet (цит.: 1)  elib (цит.: 1); E. A. Volkov, “Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle”, Comput. Math. Math. Phys., 53:8 (2013), 1128–1138  crossref  mathscinet  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)
59. Е. А. Волков, “Исследование разрешимости нелокальной краевой задачи методом сжатых отображений”, Ж. вычисл. матем. и матем. физ., 53:10 (2013), 1679–1683  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  elib; E. A. Volkov, “Solvability analysis of a nonlocal boundary value problem by applying the contraction mapping principle”, Comput. Math. Math. Phys., 53:10 (2013), 1494–1498  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)
60. E. A. Volkov, A. A. Dosiyev, S. C. Buranay, “On the solution of a nonlocal problem”, Comput. Math. Appl., 66:3 (2013), 330–338  mathnet  crossref  mathscinet (cited: 4)  zmath  isi (cited: 11)  elib (cited: 5)  scopus (cited: 11)
61. С. В. Конягин, Ю. В. Малыхин, К. С. Рютин, “О точном восстановлении разреженного вектора по линейным измерениям”, Матем. заметки, 94:1 (2013), 122–129  mathnet (цит.: 1)  crossref  mathscinet  zmath  elib (цит.: 1); S. V. Konyagin, Yu. V. Malykhin, C. S. Rjutin, “On Exact Recovery of Sparse Vectors from Linear Measurements”, Math. Notes, 94:1 (2013), 107–114  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
62. Yu. V. Malykhin, K. S. Ryutin, “On the concentration of measure and the $L^1$-norm”, J. Approx. Theory, 175 (2013), 77–82  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
63. А. И. Тюленев, “Задача о следах для пространств Соболева с весами типа Макенхаупта”, Матем. заметки, 94:5 (2013), 720–732  mathnet (цит.: 6)  crossref  mathscinet (цит.: 6)  zmath  elib (цит.: 3); A. I. Tjulenev, “The Problem of Traces for Sobolev Spaces with Muckenhoupt-Type Weights”, Math. Notes, 94:5 (2013), 668–680  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  scopus (cited: 2)
64. А. И. Тюленев, “Точки дифференцируемости функций из весовых пространств Соболева”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Тр. МИАН, 283, МАИК, М., 2013, 257–266  mathnet  crossref  mathscinet  zmath  elib; A. I. Tjulenev, “Differentiability Points of Functions in Weighted Sobolev Spaces”, Proc. Steklov Inst. Math., 283 (2013), 250–259  crossref  mathscinet  zmath  isi

   2012
65. Ю. Н. Субботин, С. А. Теляковский, “Об относительных поперечниках эллипсоидов в гильбертовом пространстве”, Матем. заметки, 91:3 (2012), 473–476  mathnet  crossref  mathscinet  elib; Yu. N. Subbotin, S. A. Telyakovskii, “On the relative widths of ellipsoids in Hilbert space”, Math. Notes, 91:3 (2012), 449–452  crossref  mathscinet  isi  elib  scopus
66. С. А. Теляковский, “О свойствах блоков членов ряда $\sum \frac1k\sin kx$”, Укр. матем. журн., 64:5 (2012), 713–718  mathnet  mathscinet (цит.: 2)  zmath  isi (цит.: 2)  scopus (цит.: 1); S. A. Telyakovskii, “On the properties of blocks of terms of the series $\sum\frac1k\sin kx$”, Ukr. Math. J., 64:5 (2012), 816–822  crossref  isi (cited: 2)  elib  scopus (cited: 1)
67. О. В. Бесов, “Некоторые пространства функций нулевой гладкости”, Докл. РАН, 445:1 (2012), 5–8  mathnet  zmath  elib; O. V. Besov, “Function spaces of smoothness zero”, Dokl. Math., 86:1 (2012), 447–449  crossref  zmath  isi  elib  scopus
68. О. В. Бесов, “О пространствах функций нулевой гладкости”, Матем. сб., 203:8 (2012), 3–16  mathnet (цит.: 5)  crossref  mathscinet (цит.: 5)  mathscinet (цит.: 5)  zmath  elib (цит.: 2); O. V. Besov, “On spaces of functions of smoothness zero”, Sb. Math., 203:8 (2012), 1077–1090  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 3)  scopus (cited: 4)
69. Г. И. Архипов, С. Б. Гашков, М. П. Минеев, С. М. Никольский, В. А. Садовничий, “О математических работах Владимира Николаевича Чубарикова”, Дискрет. матем., 24:2 (2012), 4–20  mathnet  crossref  mathscinet  elib
70. V. A. Galaktionov, E. Mitidieri, S. Pohozaev, “Global Sign-changing Solutions of a Higher Order Semilinear Heat Equation in the Subcritical Fujita Range”, Advanced Nonlinear Studies, 12:3 (2012), 569–596  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 1)
71. С. И. Похожаев, “Отсутствие глобальных знакопеременных решений нелинейного уравнения теплопроводности”, Докл. РАН, 443:3 (2012), 296–299  mathnet (цит.: 2)  mathscinet (цит.: 1)  zmath  elib (цит.: 2); S. I. Pohozaev, “Blow-up of Global Sign-Changing Solutions of a Nonlinear Heat Equation”, Dokl. Math., 85:2 (2012), 225–228  crossref  mathscinet  zmath  isi  elib (cited: 1)  scopus
72. S. I. Pohozaev, “Blow-up of smooth solutions of the Korteweg–de Vries equation”, Nonlinear Analysis: Theory, Methods & Applications, 75:12 (2012), 4688–4698  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 3)  scopus (cited: 3)
73. С. И. Похожаев, “Об одном классе начально-краевых задач для уравнений типа Кортевега–де Фриза”, Дифференц. уравнения, 48:3 (2012), 368–374  mathnet (цит.: 4)  mathscinet  zmath  elib (цит.: 1); S. I. Pokhozhaev, “On a class of initial-boundary value problems for equations of Korteweg–de Vries type”, Differ. Equ., 48:3 (2012), 372–378  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 1)
74. С. И. Похожаев, “Об отсутствии глобальных решений задачи Коши для уравнения Кортвега–де Фриза”, Функц. анализ и его прил., 46:4 (2012), 51–60  mathnet (цит.: 4)  crossref  mathscinet (цит.: 3)  zmath  elib (цит.: 2); S. I. Pokhozhaev, “On the nonexistence of global solutions of the Cauchy problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 46:4 (2012), 279–286  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)
75. V. Pikulin, S. Pohozaev, Equations in mathematical physics: a practical course, Modern Birkhäuser Classics, Birkhäuser, Basel, 2012 , 207 pp.  crossref
76. С. В. Бочкарев, “Средние Валле Пуссена рядов Фурье для квадратичного спектра и спектров степенной плотности”, VII Международный симпозиум «Ряды Фурье и их приложения» (Ростов-на-Дону, 2012 г.), Тезисы докладов, Южный федеральный университет, 2012, 12–13
77. Ж. Бургейн, Б. С. Кашин, “О равномерном приближении частной суммы ряда Дирихле более короткой суммой и $\Phi$-поперечниках”, Матем. сб., 203:12 (2012), 57–80  mathnet (цит.: 1)  crossref  mathscinet (цит.: 1)  zmath  adsnasa  elib (цит.: 2); J. Bourgain, B. S. Kashin, “Uniform approximation of partial sums of a Dirichlet series by shorter sums and $\Phi$-widths”, Sb. Math., 203:12 (2012), 1736–1760  crossref  mathscinet  zmath  isi (cited: 1)  hlocal  elib  scopus
78. E. A. Volkov, A. A. Dosiyev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Ж. вычисл. матем. и матем. физ., 52:6 (2012), 1001  mathnet (цит.: 1)  mathscinet  elib; E. A. Volkov, A. A. Dosiyev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Comput. Math. Math. Phys., 52:6 (2012), 879–886  crossref  mathscinet  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
79. Е. А. Волков, “О локальном сеточном методе решения уравнения Лапласа в бесконечном прямоугольном цилиндре”, Ж. вычисл. матем. и матем. физ., 52:1 (2012), 97–104  mathnet  mathscinet  zmath  adsnasa  elib; E. A. Volkov, “About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder”, Comput. Math. Math. Phys., 52:1 (2012), 90–97  crossref  mathscinet  zmath  isi  elib  scopus
80. М. З. Гараев, С. В. Конягин, Ю. В. Малыхин, “Асимптотика суммы степеней расстояний между степенными вычетами по простому модулю”, Теория чисел, алгебра и анализ, Сборник статей. К 75-летию со дня рождения профессора Анатолия Алексеевича Карацубы, Тр. МИАН, 276, МАИК, М., 2012, 83–95  mathnet (цит.: 4)  mathscinet (цит.: 3)  elib; M. Z. Garaev, S. V. Konyagin, Yu. V. Malykhin, “Asymptotics for the sum of powers of distances between power residues modulo a prime”, Proc. Steklov Inst. Math., 276 (2012), 77–89  crossref  mathscinet  isi (cited: 1)  elib (cited: 2)  scopus (cited: 2)
81. Ю. В. Малыхин, “Скобочная энтропия и VC-размерность”, Матем. заметки, 91:6 (2012), 853–860  mathnet  crossref  mathscinet  elib; Yu. V. Malykhin, “Bracketing Entropy and VC-Dimension”, Math. Notes, 91:6 (2012), 800–807  crossref  mathscinet  isi  elib  scopus
82. S. V. Konyagin, Yu. V. Malykhin, “Basis sets in Banach spaces”, Nonlinear analysis: stability, approximation, and inequalities, in honor of Themistocles M. Rassias on the occasion of his 60-th birthday, Springer Optim. Appl., 68, Springer-Verlag, Berlin–Heidelberg–New York, 2012, 381–386  mathnet  crossref  mathscinet (цит.: 1)  zmath  scopus

   2011
83. С. А. Теляковский, Курс лекций по математическому анализу. Семестр II, Лекц. курсы НОЦ, 17, МИАН, М., 2011 , 194 с.  mathnet  mathnet  crossref  zmath  elib
84. С. А. Теляковский, “Оценка одновременного приближения функций и их производных суммами Фурье”, Матем. заметки, 90:3 (2011), 478–480  mathnet (цит.: 1)  crossref  mathscinet  elib (цит.: 1); S. A. Telyakovskii, “Estimate of the Simultaneous Approximation of Functions and Their Derivatives by Fourier Sums”, Math. Notes, 90:3 (2011), 464–466  crossref  mathscinet  isi  elib  scopus
85. Ю. Н. Субботин, С. А. Теляковский, “Об относительных поперечниках классов дифференцируемых функций. III”, Тр. ИММ УрО РАН, 17, № 3, 2011, 300–302  mathnet  mathscinet (цит.: 1)  elib
86. V. V. Arestov, V. I. Berdyshev, N. I. Chernykh, T. V. Demina, N. N. Kholschevnikova, S. V. Konyagin, Yu. N. Subbotin, S. A. Telyakovskii, I. G. Tsar'kov, V. A. Yudin, “Exposition of the lectures by S. B. Stechkin on approximation theory”, Eurasian Math. J., 2:4 (2011), 5–155  mathnet (cited: 1)  mathscinet  zmath
87. О. В. Бесов, “Теорема вложения Соболева для анизотропно нерегулярных областей”, Докл. РАН, 438:5 (2011), 586–589  mathscinet (цит.: 1)  zmath  elib (цит.: 1); O. V. Besov, “Sobolev embedding theorem for anisotropically irregular domains”, Dokl. Math., 83:3 (2011), 367–370  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 1)
88. O. V. Besov, “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51  mathnet (cited: 3)  mathscinet (cited: 4)  zmath
89. С. И. Похожаев, “Об отсутствии глобальных решений уравнения Кортевега–де Фриза”, Уравнения в частных производных, СМФН, 39, РУДН, М., 2011, 141–150  mathnet (цит.: 6)  mathscinet (цит.: 6)  zmath; S. I. Pohozaev, “On the absence of global solutions of the Korteweg–de Vries equation”, Journal of Mathematical Sciences, 190:1 (2013), 147–156  crossref  mathscinet  zmath  scopus (cited: 4)
90. С. И. Похожаев, “О некоторых весовых тождествах для решений обобщенных уравнений Кортевега–де Фриза”, Матем. заметки, 89:3 (2011), 393–409  mathnet (цит.: 4)  crossref  mathscinet (цит.: 1)  elib (цит.: 2); S. I. Pokhozhaev, “Weighted Identities for the Solutions of Generalized Korteweg–de Vries Equations”, Math. Notes, 89:3 (2011), 382–396  crossref  mathscinet  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)
91. С. И. Похожаев, “О квазиинвариантах Римана”, Матем. сб., 202:6 (2011), 111–132  mathnet (цит.: 3)  crossref  mathscinet (цит.: 1)  zmath  adsnasa  elib (цит.: 2); S. I. Pokhozhaev, “Riemann quasi-invariants”, Sb. Math., 202:6 (2011), 887–907  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)
92. С. И. Похожаев, “Разрушение знакопеременных решений квазилинейного параболического уравнения”, Дифференц. уравнения, 47:3 (2011), 376–384  elib (цит.: 1); S. I. Pokhozhaev, “Blow-up of sign-changing solutions of a quasilinear heat equation”, Differ. Equ., 47 (2011), 373–381  crossref  zmath  isi  elib  scopus
93. С. И. Похожаев, “Об отсутствии глобальных решений некоторых начально-краевых задач для уравнения Кортевега–де Фриза”, Дифференц. уравнения, 47:4 (2011), 493–498  mathscinet (цит.: 3)  zmath  elib (цит.: 5); S. I. Pokhozhaev, “On the nonexistence of global solutions for some initial–boundary value problems for the Korteweg–de Vries equation”, Differ. Equ., 47:4 (2011), 488–493  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 5)  scopus (cited: 6)
94. С. И. Похожаев, “О зависимости критического показателя нелинейного уравнения теплопроводности от начальной функции”, Дифференц. уравнения, 47:7 (2011), 946–953  mathscinet (цит.: 3)  zmath  elib (цит.: 2); S. I. Pohozaev, “On the dependence of the critical exponent of the nonlinear heat equation on the initial function”, Differ. Equ., 47:7 (2011), 955–962  crossref  isi (cited: 2)  scopus (cited: 1)
95. V. A. Galaktionov, E. Mitidieri, S. I. Pohozaev, “Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II”, Nonlinear Anal. Real World Appl., 12:4 (2011), 2435–2466  crossref  mathscinet (cited: 9)  zmath  isi (cited: 8)  elib (cited: 9)  scopus (cited: 9)
96. С. И. Похожаев, “О существовании и отсутствии решений некоторых квазилинейных гиперболических уравнений”, Дифференциальные уравнения, 47:12 (2011), 732–1740  mathscinet (цит.: 1); S. I. Pokhozhaev, “On the existence and nonexistence of solutions of some quasilinear hyperbolic equations”, Differential Equations, 47:12 (2011), 1754–1762  crossref  mathscinet  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
97. Бочкарев С.В., “Средние Валле Пуссена рядов Фурье для квадратичного спектра и спектров степенной плотности”, Докл. РАН, 439:3 (2011), 298–303  zmath  elib (цит.: 1); Bochkarev S.V., “De la Vallee-Poussin Means of Fourier Series for Quadratic Spectrum and Power Density Spectra”, Dokl. Math., 84:1 (2011), 485–490  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
98. S. V. Konyagin, Yu. V. Malykhin and V. N. Temlyakov, “On basis sets in Banach spaces”, East J. Approx., 17 (2011), 215–220  mathscinet  zmath
99. А. И. Тюленев, “Характеризация следов весовых пространств Соболева”, Труды МФТИ, 3:1 (2011), 141–145 http://mipt.ru/science/trudy/trudy-9/TRUDU-sborka-9-arphcxl1tgs.pdf  elib
На главную страницу

© Математический институт им. В.А. Стеклова Российской академии наук, 2004–2017
Разработка и дизайн: Отдел КС и ИТ