Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | Zentralblatt MATH | Web-mail 

 About the Institute
 Staff publications
 Academic Council
 Dissertation Councils
 Journals and Books
 In memoriam

8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map

Sheinman Oleg Karlovich
(full list of publications)
| by years | scientific publications | by types |


1. O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

2. O. K. Sheinman, “Lax operator algebras and gradings on semisimple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 , First online: September, 2015, arXiv: 1406.5017  mathnet (cited: 3)  crossref  mathscinet (cited: 2)  zmath  isi (cited: 3)  elib (cited: 1)  scopus
3. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus
4. O. K. Sheinman, “Lax operator algebras and Lax equations”, after series of authors talks at Southeastern Lie Theory Workshop, College of Charleston, Charlestone, SC, USA, December 16–18, 2012, algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., 92, eds. K. C. Misra, D. K. Nakano, B. J. Parshall, Amer. Math. Soc., Providence, RI, 2016, 221–246 http://bookstore.ams.org/pspum-92/  mathscinet

5. O. K. Sheinman, “Lax operators algebras and gradings on semisimple Lie algebras”, Dokl. Math., 91:2 (2015), 160–162  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
6. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theoret. and Math. Phys., 185:3 (2015), 1816–1831  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
7. O. K. Sheinman, “Semisimple Lie Algebras and Hamiltonian Theory of Finite-Dimensional Lax Equations with Spectral Parameter on a Riemann Surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188  mathnet  crossref  crossref  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
8. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet (cited: 1)  mathscinet  zmath  isi (cited: 1)  elib

9. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)
10. O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov's Seminar 2012–2014, Advances in the Mathematical Sciences, Amer. Math. Soc. Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 373–392 , arXiv: 1304.2510  crossref  mathscinet (cited: 1)

11. O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric Methods in Physics, XXX Workshop, Białowieża, Poland, 2011, Trends in Mathematics, Springer, Basel, 2013, 405–413 , arXiv: 1009.4706  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

12. O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)

13. O. K. Sheinman, “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 271–284  mathscinet (cited: 2)  zmath
14. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 7)
15. O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213  mathnet  crossref  mathscinet  zmath  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)

16. I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 12)  elib (cited: 12)  scopus (cited: 9); O. K. Sheinman, “Krichever–Novikov algebras, their representations and applications in geometry and mathematical physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), 85–161  crossref  zmath  isi  elib  scopus

17. O. K. Sheinman, “Krichever–Novikov algebras and their representations”, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 313–321  crossref  mathscinet (cited: 2)  zmath
18. O. K. Sheinman, “Highest weight representations of Krichever–Novikov algebras and integrable systems”, Russian Math. Surveys, 60:2 (2005), 370–372  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
19. O. K. Sheinman, “Projective Flat Connections on Moduli Spaces of Riemann Surfaces and the Knizhnik–Zamolodchikov Equations”, Proc. Steklov Inst. Math., 251 (2005), 293–304  mathnet  mathscinet  zmath

20. O. K. Sheinman, “Affine Krichever-Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316  mathscinet (cited: 9)  zmath
21. M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 10)  elib (cited: 10)  scopus (cited: 12)

22. O. K. Sheĭnman, “Second-orde Casimirs for the affine Krichever-Novikov algebras $\widehat{\mathfrak{gl}}\sb{g,2}$ and $\widehat{\mathfrak{sl}}\sb{g,2}$”, Fundamental mathematics today, MCCME, Moscow, 2003, 372–404  mathscinet

23. O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib  scopus (cited: 4)
24. O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628  mathnet (cited: 8)  mathscinet (cited: 5)  zmath
25. O. K. Sheinman, “Second-order Casimir operators for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Russian Math. Surveys, 56:5 (2001), 986–987  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  scopus (cited: 2)
26. O. K. Sheinman, “Krichever–Novikov algebras and self-duality equations on Riemann surfaces”, Russian Math. Surveys, 56:1 (2001), 176–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 3)

27. M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russian Math. Surveys, 54:1 (1999), 213–249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 22)  scopus (cited: 24)

28. M. Schlichenmaier, O. K. Scheinman, “The Sugawara construction and Casimir operators for Krichever-Novikov algebras”, Complex analysis and representation theory, 1, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 , arXiv: q-alg/9512016  crossref  mathscinet (cited: 17)  zmath  scopus (cited: 23)

29. O. K. Sheinman, “Orbits and representations of Krichever-Novikov affine-type algebras”, Algebra, 3, J. Math. Sci., 82:6 (1996), 3834–3843  crossref  mathscinet  zmath  scopus
30. O. K. Sheinman, “Integrable many-body systems of Calogero-Moser-Sutherland type in high dimension”, Internat. Math. Res. Notices, 1996, no. 1, 27–36  crossref  mathscinet  zmath  elib  scopus

31. O. K. Sheĭnman, “Representations of Krichever-Novikov algebras”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 185–197  mathscinet (cited: 3)  zmath  isi (cited: 13)
32. O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 29:1 (1995), 44–55  mathnet  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 4)
33. O. K. Sheinman, “The Krichever–Novikov algebras and CCC-groups”, Russian Math. Surveys, 50:5 (1995), 1097–1099  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)

34. O. K. Sheinman, “Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 16)

35. O. K. Sheinman, “Highest weight modules over certain quasigraded Lie algebras on elliptic curves”, Funct. Anal. Appl., 26:3 (1992), 203–208  mathnet  crossref  mathscinet  zmath  isi (cited: 10)  scopus (cited: 9)

36. O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219  mathnet  crossref  mathscinet  zmath  isi (cited: 15)  scopus (cited: 19)

37. O. K. Sheinman, “Hamiltonian string formalism and discrete groups”, Funct. Anal. Appl., 23:2 (1989), 124–128  mathnet  crossref  mathscinet  zmath  isi  scopus

38. O. K. Sheinman, “Kernel of evolution operator in the space of sections of a vector bundle as integral over trajectories”, Funct. Anal. Appl., 22:3 (1988), 251–253  mathnet  crossref  mathscinet  zmath  isi  scopus

39. O. K. Sheinman, “Dedekind $\eta$-function and indefinite quadratic forms”, Funct. Anal. Appl., 19:3 (1985), 232–234  mathnet  crossref  mathscinet  zmath  isi  scopus

40. S. S. Lebedev, O. K. Sheĭnman, “Dual approach to integer programming”, Engrg. Cybernetics, 21:1 (1983), 140–147 (1984)  mathscinet  zmath  scopus

41. S. S. Lebedev, O. K. Sheĭnman, “Duality in integer programming”, Èkonom. i Mat. Metody, 17:3 (1981), 593–608  mathscinet  zmath

42. O. K. Šeĭnman, “Duality and subadditive functions in integer programming”, Èkonom. i Mat. Metody, 16:4 (1980), 808–810  mathscinet

43. O. K. Šeĭnman, “Group-theoretic methods of constructing cuts in integer programming”, Mathematical methods of solution of economic problems, v. 8, Optimal'noe Planirovanie i Upravlenie [Optimal Planning and Control Series], Nauka, Moscow, 1979, 44–49  mathscinet

44. O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252  mathnet  crossref  mathscinet  zmath  adsnasa


45. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.  crossref  mathscinet (cited: 8)

46. O. K. Sheinman, “Algebry Krichevera–Novikova, ikh predstavleniya i prilozheniya v geometrii i matematicheskoi fizike”, Sovr. probl. matem., 10, MIAN, M., 2007, 3–140 , 142 pp.  mathnet (cited: 1)  mathnet  crossref  zmath

47. O. K. Sheinman, Osnovy teorii predstavlenii, MTsNMO, M., 2004 , 64 pp.; O. K. Sheinman, Basic representation theory, MCCME, Moscow, 2005
48. I. M. Paramonova, O. K. Sheinman, Zadachi seminara “Algebry Li i ikh prilozheniya”, MTsNMO, M., 2004 , 48 pp.


49. N. N. Andreev, V. M. Buchstaber, A. I. Garber, V. V. Kozlov, S. P. Konovalov, A. A. Mal'tsev, Yu. V. Nesterenko, S. P. Novikov, A. N. Parshin, I. Kh. Sabitov, A. L. Semenov, A. G. Sergeev, O. K. Sheinman, M. I. Shtogrin, E. V. Shchepin, “Nikolai Petrovich Dolbilin (on his 70th birthday)”, Russian Math. Surveys, 69:1 (2014), 181–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib

50. V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834  mathnet

51. V. Buchstaber, S. Gusein-Zade, Yu. Ilyashenko, V. Kozlov, S. Natanzon, O. Sheinman, A. Sossinsky, D. Treschev, M. Tsfasman, “Armen Sergeev”, Mosc. Math. J., 9:2 (2009), 439–440  mathnet  mathscinet

52. S. M. Gusein-Zade, Yu. S. Ilyashenko, G. A. Kabatiansky, S. K. Lando, A. G. Sergeev, O. K. Sheinman, O. V. Schwarzman, M. A. Tsfasman, È. B. Vinberg, “Sergey Natanzon”, Mosc. Math. J., 8:4 (2008), 843–844  mathnet  isi

53. V. M. Buchstaber, Yu. S. Ilyashenko, I. M. Krichever, O. K. Sheinman, A. B. Sossinski, M. A. Tsfasman, “Sergey Petrovich Novikov”, Mosc. Math. J., 3:4 (2003), 1206–1208  mathnet  mathscinet

Letters, errata

54. O. K. Sheinman, Modern problems of mathematics, mechanics, and mathematical physics. Part II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 325–327  mathnet  crossref  mathscinet  elib
Home page

© Steklov Mathematical Institute of RAS, 2004–2017