Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | Zentralblatt MATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Novikov Sergei Petrovich
(full list of publications)
| by years | scientific publications | by types |



   2016
1. P. G. Grinevich, S. P. Novikov, “On $\mathbf{s}$-meromorphic ordinary differential operators”, Russian Math. Surveys, 71:6 (2016), 1143–1145  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2015
2. P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 1)  elib  elib  scopus (cited: 1)

   2014
3. P. G. Grinevich, S. P. Novikov, “Spectrally meromorphic operators and non-linear systems”, Russian Math. Surveys, 69:5 (2014), 924–926  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)

   2013
4. P. G. Grinevich, S. P. Novikov, “Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib  elib  scopus

   2011
5. S. P. Novikov, P. Grinevich and A. Mironov, “On the nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator”, 2011, arXiv: 1101.5678
6. Proc. Steklov Inst. Math., 273 (2011), 238–251  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib
7. P. G. Grinevich, S. P. Novikov, “Singular solitons and indefinite metrics”, Dokl. Math., 83:1 (2011), 56–58  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
8. S. P. Novikov, P. Grinevich, and A. Mironov, “2D Pauli operator in the magnetic field. Low temperature physics”, Low Temperature Physics, 37 (2011), 829–833  crossref  adsnasa  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus

   2010
9. P. Grinevich, A. Mironov, S. Novikov, New Reductions and Nonlinear Systems for 2D Schrodinger Operators, 2010 , arXiv: 1001.4300
10. P. G. Grinevich, A. E. Mironov, S. P. Novikov, “2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data”, Russian Math. Surveys, 65:3 (2010), 580–582  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 5)
11. P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127  mathnet  crossref  crossref  adsnasa  isi (cited: 3)  elib  scopus (cited: 1)

   2009
12. P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib (cited: 5)  elib (cited: 5)  scopus (cited: 5)
13. S. P. Novikov, Four Lectures: Discretization and Integrability. Discrete Spectral Symmetries, Lecture Notes in Phys., 767, Springer, Berlin, 2009, 119–138  crossref  mathscinet (cited: 2)  scopus (cited: 2)

   2008
14. S. P. Novikov, “Dynamical systems and differential forms. Low dimensional Hamiltonian systems”, Geometric and probabilistic structures in dynamics, Contemp. Math., 469, Amer. Math. Soc., Providence, RI, 2008, 271–287  crossref  mathscinet (cited: 1)  zmath  isi (cited: 2)
15. P. G. Grinevich, S. P. Novikov, “Reality problems in the soliton theory”, Probability, geometry and integrable systems, Math. Sci. Res. Inst. Publ., 55, Cambridge Univ. Press, Cambridge, 2008, 221–239  mathscinet  zmath
16. S. P. Novikov, Lectures on Discrete Systems, University of Montreal, Canada, June 13–20, Proceedings of Workshop on the Discrete Systems and Symmetry, 2008

   2006
17. S. P. Novikov, I. A. Taimanov, Modern geometric structures and fields, Translated from the 2005 Russian original by Dimitry Chibisov, Graduate Studies in Mathematics, 71, American Mathematical Society, Providence, RI, 2006 , xx+633 pp.  mathscinet (cited: 13)  zmath
18. A. Ya. Maltsev, S. P. Novikov, “Topology, quasiperiodic functions, and the transport phenomena”, Topology in condensed matter, Springer Ser. Solid-State Sci., 150, Springer, Berlin, 2006, 31–59  crossref  mathscinet (cited: 1)  zmath

   2005
19. S. P. Novikov, “The Schrödinger equation and symplectic geometry”, Surveys in modern mathematics, London Math. Soc. Lecture Note Ser., 321, Cambridge Univ. Press, Cambridge, 2005, 203–210  mathscinet (cited: 1)
20. S. P. Novikov, Topology of Foliations given by the real part of holomorphic $1$-forms, 2005 , arXiv: math/0501338
21. S. P. Novikov, “Topology of generic Hamiltonian foliations on Riemann surfaces”, Mosc. Math. J., 5:3 (2005), 633–667  mathnet (cited: 1)  mathscinet (cited: 2)  zmath
22. I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 2)
23. S. P. Novikov, “On Metric-Independent Exotic Homology”, Proc. Steklov Inst. Math., 251 (2005), 206–212  mathnet  mathscinet  zmath

   2004
24. B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Topological and algebraic geometry methods in contemporary mathematical physics, Classic Reviews in Mathematics and Mathematical Physics, 2, Cambridge Scientific Publishers, Cambridge, 2004 , iv+139 pp.  mathscinet (cited: 1)  zmath
25. A. Ya. Maltsev, S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1-2 (2004), 31–46  crossref  mathscinet (cited: 10)  zmath  adsnasa  isi (cited: 5)  elib (cited: 10)  scopus (cited: 11)
26. S. P. Novikov, “The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the West”, Translated from Istor.-Mat. Issled. (2) No. 7(42) (2002), 326–356; MR1960272 by A. Sossinsky, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 1–24  mathscinet  zmath
27. S. P. Novikov, “Topology in the 20th century: a view from the inside”, Russian Math. Surveys, 59:5 (2004), 803–829  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 2)
28. S. P. Novikov, “Algebraic topology”, Sovrem. Probl. Mat., 4, Steklov Math. Inst., RAS, Moscow, 2004, 3–45 , 46 pp.  mathnet  crossref  mathscinet  zmath
29. S. P. Novikov, “Discrete Connections and Difference Linear Equations”, Proc. Steklov Inst. Math., 247 (2004), 168–183  mathnet  mathscinet  zmath

   2003
30. P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, Integrability, topological solitons and beyond, J. Math. Phys., 44, no. 8, 2003, 3174–3184  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
31. A. Ya. Maltsev, S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Dedicated to the 50th anniversary of IMPA, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 171–210  crossref  mathscinet (cited: 3)  zmath  isi (cited: 5)  elib (cited: 3)  scopus (cited: 4)
32. P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math., 56:7 (2003), 956–978  crossref  mathscinet (cited: 8)  zmath  isi (cited: 7)  elib (cited: 7)
33. I. A. Dynnikov, S. P. Novikov, “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3:2 (2003), 419–438  mathnet (cited: 24)  mathscinet (cited: 22)  zmath  elib (cited: 17)
34. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 13)  elib (cited: 10)  scopus (cited: 10)

   2002
35. S. P. Novikov, On the exotic De-Rham cohomology. Perturbation theory as a spectral sequence, 2002 , arXiv: math-ph/0201019

   2001
36. B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 177–332  crossref  mathscinet (cited: 72)
37. A. Ya. Maltsev, S. P. Novikov, “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156:1-2 (2001), 53–80  crossref  mathscinet (cited: 32)  zmath  isi (cited: 45)  elib (cited: 39)  scopus (cited: 49)
38. S. P. Novikov, A Note on the Real Fermionic and Bosonic quadratic forms: Their Diagonalization and Topological Interpreation, 2001 , arXiv: math-ph/0110032
39. P. G. Grinevich, S. P. Novikov, “Real finite-zone solutions of the sine-Gordon equation: a formula for the topological charge”, Russian Math. Surveys, 56:5 (2001), 980–981  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  scopus (cited: 4)

   2000
40. S. P. Novikov, “Classical and modern topology. Topological phenomena in real world physics”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., no. Special Volume, 2000, 406–424  mathscinet (cited: 2)  zmath  isi (cited: 1)
41. S. P. Novikov, “Surgery in the 1960s”, Surveys on surgery theory, v. 1, Ann. of Math. Stud., 145, Princeton Univ. Press, Princeton, NJ, 2000, 31–39  mathscinet (cited: 2)  zmath
42. B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib (cited: 3)  scopus (cited: 4)
43. I. M. Krichever, S. P. Novikov, “Holomorphic bundles and commuting difference operators. Two-point constructions”, Russian Math. Surveys, 55:3 (2000), 586–588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  scopus (cited: 7)
44. I. M. Krichever, S. P. Novikov, “Holomorphic bundles and scalar difference operators: one-point constructions”, Russian Math. Surveys, 55:1 (2000), 180–181  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 4)

   1999
45. S. P. Novikov, “Schrodinger operators on graphs and symplectic geometry”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 397–413  mathscinet (cited: 20)  zmath
46. I. Krichever, S. P. Novikov, “Periodic and almost-periodic potentials in inverse problems”, Inverse Problems, 15:6 (1999), R117–R144  crossref  mathscinet (cited: 9)  zmath  isi (cited: 11)  scopus (cited: 12)
47. I. M. Krichever, S. P. Novikov, “Trivalent graphs and solitons”, Russian Math. Surveys, 54:6 (1999), 1248–1249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 9)  scopus (cited: 6)
48. S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Russian Math. Surveys, 54:5 (1999), 1031–1032  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib (cited: 3)  scopus (cited: 3)
49. S. P. Novikov, A. S. Schwarz, “Discrete Lagrangian systems on graphs. Symplectic-topological properties”, Russian Math. Surveys, 54:1 (1999), 258–259  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  scopus (cited: 7)
50. S. P. Novikov, “Difference Schrödinger Operators”, Proc. Steklov Inst. Math., 224 (1999), 250–265  mathnet  mathscinet  zmath

   1998
51. S. Novikov, “Discrete Schrödinger operators and topology”, Mikio Sato: a great Japanese mathematician of the twentieth century, Asian J. Math., 2, no. 4, 1998, 921–933  mathscinet (cited: 8)  zmath
52. S. P. Novikov, A. Ya. Maltsev, “Topological phenomena in normal metals”, Phys. Uspekhi, 41:3 (1998), 231–239  mathnet  crossref  crossref  adsnasa  isi (cited: 8)  elib (cited: 25)  scopus (cited: 16)

   1997
53. S. Novikov, “Rôle of integrable models in the development of mathematics”, Fields Medallists' lectures, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997, 202–217  crossref  mathscinet
54. S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132  mathscinet (cited: 15)  zmath
55. S. P. Novikov, “The Schrödinger operator on graphs and topology”, Russian Math. Surveys, 52:6 (1997), 1320–1321  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  scopus (cited: 11)
56. I. A. Dynnikov, S. P. Novikov, “Laplace transforms and simplicial connections”, Russian Math. Surveys, 52:6 (1997), 1294–1295  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 5)
57. S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 43)  scopus (cited: 40)
58. S. P. Novikov, “Algebraic properties of two-dimensional difference operators”, Russian Math. Surveys, 52:1 (1997), 226–227  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 9)  elib (cited: 7)  scopus (cited: 7)

   1996
59. S. P. Novikov, “A correspondence between $\beta$-pre-Frattini subalgebras and $\beta$-normalizers of multirings”, Vestn. Belorussk. gos. un-ta. Ser. 1. Fiz., matem., inform., 1996, no. 1, 46–48  mathscinet  zmath
60. S. P. Novikov, “Theory of the string equation in the double-scaling limit of 1-matrix models”, Internat. J. Modern Phys. B, 10:18-19 (1996), 2249–2271  crossref  mathscinet  adsnasa  isi  elib  scopus
61. S. P. Novikov, “Topology”, Topology, I, Encyclopaedia Math. Sci., 12, Springer, Berlin, 1996, 1–319  crossref  mathscinet (cited: 12)  zmath
62. S. P. Novikov, A. Ya. Maltsev, “Topologicheskie kvantovye kharakteristiki, nablyudaemye pri issledovanii provodimosti v normalnykh metallakh”, Pisma v ZhETF, 63:10 (1996), 809–813

   1995
63. P. G. Grinevich, S. P. Novikov, “Nonselfintersecting magnetic orbits on the plane. Proof of the overthrowing of cycles principle”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 59–82  mathscinet (cited: 4)
64. V. M. Buchstaber, S. P. Novikov, “The S. P. Novikov Seminar”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 1–7  mathscinet  zmath
65. S. P. Novikov, “The semiclassical electron in a magnetic field and lattice. Some problems of low-dimensional “periodic” topology”, Geom. Funct. Anal., 5:2 (1995), 434–444  crossref  mathscinet (cited: 4)  zmath  isi (cited: 3)  scopus (cited: 3)
66. A. P. Veselov, S. P. Novikov, “Exactly soluble periodic two-dimensional Schrödinger operators”, Russian Math. Surveys, 50:6 (1995), 1316–1317  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)

   1994
67. S. P. Novikov, Solitons and geometry, Lezioni Fermiane. [Fermi Lectures], Published for the Scuola Normale Superiore, Pisa, 1994 , ii+60 pp.  mathscinet (cited: 2)
68. P. G. Grinevich, S. P. Novikov, “Strunnoe uravnenie – II. Fizicheskoe reshenie”, Algebra i analiz, 6:3 (1994), 118–140  mathnet (cited: 2)  mathscinet (cited: 6)  zmath; P. G. Grinevich, S. P. Novikov, “String equation. II. Physical solution”, St. Petersburg Math. J., 6:3 (1995), 553–574  mathscinet  zmath

   1993
69. S. P. Novikov, “Differential geometry and hydrodynamics of soliton lattices”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 242–256  crossref  mathscinet  zmath
70. B. A. Dubrovin, S. P. Novikov, Hydrodynamics of soliton lattices, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Harwood Academic Publishers GmbH, Yverdon, 1993 , ii+136 pp.  mathscinet (cited: 10)
71. S. P. Novikov, “Quasiperiodic structures in topology”, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 223–233  mathscinet (cited: 8)  zmath
72. S. P. Novikov, A. Ya. Mal'tsev, “The Liouville form of averaged Poisson brackets”, Russian Math. Surveys, 48:1 (1993), 155–157  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)

   1992
73. S. P. Novikov, “Action-angle variables and algebraic geometry”, La Mécanique analytique de Lagrange et son héritage, II (Turin, 1989), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126, no. suppl. 2, 1992, 139–150  mathscinet  zmath
74. S. Novikov, “Rôle of integrable models in the development of mathematics”, Mathematical research today and tomorrow (Barcelona, 1991), Lecture Notes in Math., 1525, Springer, Berlin, 1992, 13–28  crossref  mathscinet
75. S. P. Novikov, “Integrability in mathematics and theoretical physics: solitons”, Math. Intelligencer, 14:4 (1992), 13–21  crossref  mathscinet  isi (cited: 3)  elib (cited: 1)  scopus (cited: 2)
76. S. P. Novikov, “Hydrodynamics of soliton lattices: differential geometry and Hamiltonian formalism”, Progress in variational methods in Hamiltonian systems and elliptic equations (L'Aquila, 1990), Pitman Res. Notes Math. Ser., 243, Longman Sci. Tech., Harlow, 1992, 144–156  mathscinet  zmath
77. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 93, Ed. 2, Springer-Verlag, New York, 1992 , xvi+468 pp.  crossref  mathscinet (cited: 52)  zmath
78. S. P. Novikov, “Various doublings of Hopf algebras. Operator algebras on quantum groups, complex cobordisms”, Russian Math. Surveys, 47:5 (1992), 198–199  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)

   1990
79. S. P. Novikov, “Riemann surfaces, operator fields, strings – analogues of the Fourier-Laurent bases”, Common trends in mathematics and quantum field theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., no. 102, 1990, 293–300  crossref  mathscinet  zmath  adsnasa  isi
80. S. P. Novikov, “On the equation $[L,A]=\epsilon\cdot 1$”, With an appendix by the author and B. A. Dubrovin, Common trends in mathematics and quantum field theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., no. 102, 1990, 287–292  crossref  mathscinet (cited: 7)  zmath  adsnasa  isi (cited: 1)
81. S. P. Novikov, A. T. Fomenko, Basic elements of differential geometry and topology, Translated from the Russian by M. V. Tsaplina, Mathematics and its Applications (Soviet Series), 60, Kluwer Academic Publishers Group, Dordrecht, 1990 , x+490 pp.  crossref  mathscinet (cited: 4)  zmath
82. K. I. Moiseevich, S. P. Novikov, “Riemann surfaces, operator fields, strings. Analogues of the Fourier–Laurent bases”, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, 356–388  mathscinet (cited: 2)
83. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part III. Introduction to homology theory, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 124, Springer-Verlag, New York, 1990 , x+416 pp.  crossref  mathscinet (cited: 42)  zmath
84. S. P. Novikov, “Complex analysis on Riemann surfaces motivated by the operatorial string theory”, Analysis, et cetera, Academic Press, Boston, MA, 1990, 501–519  crossref  mathscinet
85. S. P. Novikov, “Quantization of finite-gap potentials and nonlinear quasiclassical approximation in nonperturbative string theory”, Funct. Anal. Appl., 24:4 (1990), 296–306  mathnet  crossref  mathscinet  zmath  isi (cited: 13)  scopus (cited: 16)

   1989
86. I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33  mathnet  crossref  mathscinet  zmath  isi (cited: 30)  scopus (cited: 30)
87. B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124  mathnet  crossref  mathscinet  zmath  adsnasa  isi

   1988
88. I. M. Krichever, S. P. Novikov, “Virasoro–Gel'fand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. Phys., 5:4 (1988), 631–661  crossref  mathscinet (cited: 5)  zmath  adsnasa  scopus (cited: 9)
89. B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Geometria contemporanea. Metodi e applicazioni, Translated from the second Russian edition by Vitalij Panasenko, v. II, Nuova Biblioteca di Cultura. [New Library of Culture], Geometria e topologia delle varietà. [Geometry and topology of manifolds], Editori Riuniti, Rome, 1988 , 367 pp.  mathscinet (cited: 3)
90. S. P. Novikov, “Analytical theory of homotopy groups”, Topology and geometry – Rohlin Seminar, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 99–112  crossref  mathscinet (cited: 5)
91. P. G. Grinevich, S. P. Novikov, “Inverse scattering problem for the two-dimensional Schrödinger operator at a fixed negative energy and generalized analytic functions”, Plasma theory and nonlinear and turbulent processes in physics (Kiev, 1987), v. 1, 2, World Sci. Publishing, Singapore, 1988, 58–85  mathscinet (cited: 1)  zmath
92. P. G. Grinevich, S. P. Novikov, “Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27  mathnet  crossref  mathscinet  zmath  isi (cited: 37)  scopus (cited: 40)

   1987
93. B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Geometria contemporanea. Metodi e applicazioni, Translated from the second Russian edition by Vitalij Panasenko, v. I, Nuova Biblioteca di Cultura. [New Library of Culture], Geometria delle superfici, dei gruppi di trasformazioni e dei campi. [The geometry of surfaces, transformation groups and fields], Editori Riuniti, Rome, 1987 , 416 pp.  mathscinet (cited: 3)
94. S. P. Novikov, A. T. Fomenko, Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 , 432 pp.  mathscinet (cited: 2)
95. S. P. Novikov, “Two-dimensional Schrödinger operator and solitons. 3-dimensional integrable systems”, VIIIth international congress on mathematical physics (Marseille, 1986), World Sci. Publishing, Singapore, 1987, 226–241  mathscinet (cited: 1)
96. V. V. Avilov, I. M. Krichever, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii Kortevega–de Friza”, DAN SSSR, 295:2 (1987), 345–349  mathnet (cited: 8)  mathscinet (cited: 8)  zmath  isi (cited: 6)
97. V. V. Avilov, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii KdF”, DAN SSSR, 294:2 (1987), 325–329  mathnet (cited: 6)  mathscinet (cited: 8)  isi (cited: 10)
98. I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307  mathnet  crossref  mathscinet  zmath  isi (cited: 33)  scopus (cited: 41)
99. I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142  mathnet  crossref  mathscinet  zmath  isi (cited: 60)  scopus (cited: 91)

   1986
100. B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., pererab., Nauka, M., 1986 , 760 pp.  mathscinet (cited: 57)
101. S. P. Novikov, M. A. Shubin, “Neravenstvo Morsa i neimanovskie II$_1$-faktory”, DAN SSSR, 289:2 (1986), 289–292  mathnet (cited: 6)  mathscinet (cited: 29)  zmath  isi (cited: 27)
102. S. P. Novikov, “Bloch homology. Critical points of functions and closed 1-forms”, Dokl. Math., 33 (1986), 551–555  mathnet  mathscinet  zmath  isi
103. S. P. Novikov, A. P. Veselov, “Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations”, Solitons and coherent structures (Santa Barbara, Calif., 1985), Phys. D, 18, no. 1-3, 1986, 267–273  crossref  mathscinet (cited: 32)  zmath  isi (cited: 130)  scopus (cited: 121)
104. S. P. Novikov, “Topology”, Topology – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 12, VINITI, Moscow, 1986, 5–252  mathnet  mathscinet  zmath
105. S. P. Novikov and M. A. Shubin, “Morse Theory and von Neumann invariants of non-simply-connected manifolds”, Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics, Uspekhi Mat. Nauk, 41:5(251) (1986), 222–223  mathnet

   1985
106. A. P. Veselov, I. M. Krichever, S. P. Novikov, “Two-dimensional periodic Schrödinger operators and Prym's $\theta$-functions”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985, 283–301  mathscinet (cited: 2)
107. S. P. Novikov, “Differential geometry and the averaging method for field-theoretic systems”, III International Symposium on Selected Topics in Statistical Mechanics (Dubna, 1984), v. II, Ob'ed. Inst. Yadernykh Issled., Dubna, 1985, 106–118  mathscinet
108. B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. { 2$^e$ partie.} Géométrie et topologie des variétés. [Geometry and topology of manifolds], Translated from the Russian by Vladimir Kotliar; Reprint of the 1982 translation, Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics], “Mir”, Moscow, 1985 , 371 pp.  mathscinet (cited: 3)
109. B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. { 1$^{re}$ partie.} Géométrie des surfaces, des groupes de transformations et des champs. [Geometry of surfaces, transformation groups and fields], Translated from the Russian by Vladimir Kotliar; Reprint of the 1982 translation, Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics], “Mir”, Moscow, 1985 , 438 pp.  mathscinet (cited: 3)
110. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part II. The geometry and topology of manifolds, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 104, Springer-Verlag, New York, 1985 , xv+430 pp.  crossref  mathscinet (cited: 64)  zmath
111. S. P. Novikov, “Analiticheskaya teoriya gomotopii. Zhestkost gomotopicheskikh integralov”, DAN SSSR, 283:5 (1985), 1088–1091  mathnet  mathscinet (cited: 1)  zmath  isi (cited: 7)
112. A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, DAN SSSR, 283:5 (1985), 1036–1039  mathnet (cited: 13)  mathscinet (cited: 69)  zmath  isi (cited: 31)
113. S. P. Novikov, “The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems”, Russian Math. Surveys, 40:4 (1985), 85–98  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 24)
114. S. P. Novikov, “Algebraicheskaya topologiya v Matematicheskom institute im. V. A. Steklova AN SSSR”, Topologiya, obyknovennye differentsialnye uravneniya, dinamicheskie sistemy, Sbornik obzornykh statei. 2. K 50-letiyu instituta, Tr. MIAN SSSR, 169, 1985, 27–49  mathnet (cited: 2)  mathscinet  zmath; S. P. Novikov, “Algebraic topology at the Steklov Mathematical Institute of the Academy of Sciences of the USSR”, Proc. Steklov Inst. Math., 169 (1986), 27–50  mathscinet  zmath
115. B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems – 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 4, VINITI, Moscow, 1985, 179–277  mathnet  mathscinet  zmath

   1984
116. S. P. Novikov, “An averaging method for one-dimensional systems”, Nonlinear and turbulent processes in physics (Kiev, 1983), v. 3, Harwood Academic Publ., Chur, 1984, 1529–1540  mathscinet  adsnasa
117. S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons. The inverse scattering method, Translated from the Russian, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984 , xi+276 pp.  mathscinet (cited: 400)
118. A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788  mathnet (cited: 42)  mathscinet (cited: 25)  zmath  isi (cited: 36)
119. B. A. Dubrovin, S. P. Novikov, “O skobkakh Puassona gidrodinamicheskogo tipa”, DAN SSSR, 279:2 (1984), 294–297  mathnet (cited: 22)  mathscinet (cited: 64)  zmath  isi (cited: 52)
120. A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24  mathnet (cited: 50)  mathscinet (cited: 34)  zmath  isi (cited: 73)
121. B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 , 344 pp.  mathscinet (cited: 57)
122. S. P. Novikov, “Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations”, Differential geometry, Lie groups and mechanics. Part VI, Zap. Nauchn. Sem. LOMI, 133, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 177–196  mathnet  mathscinet  zmath
123. B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Translated from the Russian by Robert G. Burns, Graduate Texts in Mathematics, 93, Springer-Verlag, New York, 1984 , xv+464 pp.  crossref  mathscinet (cited: 41)  zmath
124. S. P. Novikov, I. A. Taimanov, “Periodicheskie ekstremali mnogoznachnykh ili ne vsyudu polozhitelnykh funktsionalov”, DAN SSSR, 274:1 (1984), 26–28  mathnet (cited: 9)  mathscinet (cited: 12)  zmath  isi (cited: 14)
125. S. P. Novikov, “The analytic generalized Hopf invariant. Many-valued functionals”, Russian Math. Surveys, 39:5 (1984), 113–124  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 14)
126. S. P. Novikov, “Kriticheskie tochki i poverkhnosti urovnya mnogoznachnykh funktsii”, Sovremennye problemy matematiki. Differentsialnye uravneniya, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Lvu Semenovichu Pontryaginu k ego semidesyatipyatiletiyu, Tr. MIAN SSSR, 166, 1984, 201–209  mathnet (cited: 12)  mathscinet (cited: 1)  zmath; S. P. Novikov, “Critical points and level surfaces of multivalued functions”, Proc. Steklov Inst. Math., 166 (1986), 223–232  mathscinet  zmath
127. A. P. Veselov, S. P. Novikov, “Skobki Puassona i kompleksnye tory”, Algebraicheskaya geometriya i ee prilozheniya, Sbornik statei, Tr. MIAN SSSR, 165, 1984, 49–61  mathnet (cited: 19)  mathscinet (cited: 28)  zmath; A. P. Veselov, S. P. Novikov, “Poisson brackets and complex tori”, Proc. Steklov Inst. Math., 165 (1985), 53–65  mathscinet  zmath

   1983
128. S. P. Novikov, “Multivalued functionals in modern mathematical physics”, Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117, suppl. 2, 1983, 635–644  mathscinet
129. B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785  mathscinet (cited: 69)  zmath  isi (cited: 86)
130. S. P. Novikov, “Dvumernye operatory Shrëdingera v periodicheskikh polyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 23, VINITI, M., 1983, 3–32  mathnet (cited: 23)  mathscinet (cited: 15)  zmath; S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, J. Soviet Math., 28:1 (1985), 1–20  crossref  mathscinet  zmath  scopus (cited: 15)

   1982
131. B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. II. Géométrie et topologie des variétés, Translated from the Russian by Vladimir Kotliar, “Mir”, Moscow, 1982 , 371 pp.  mathscinet (cited: 2)
132. B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine. Méthodes et applications. I. Géométrie des surfaces, des groupes de transformations et des champs, Translated from the Russian by Vladimir Kotliar, “Mir”, Moscow, 1982 , 438 pp.  mathscinet (cited: 2)
133. B. A. Dubrovin, S. P. Novikov, “Algebrogeometricheskie skobki Puassona dlya veschestvennykh konechnozonnykh reshenii uravneniya sine-Gordon i nelineinogo uravneniya Shrëdingera”, DAN SSSR, 267:6 (1982), 1295–1300  mathscinet (cited: 7)  zmath  isi (cited: 5)
134. A. P. Veselov, S. P. Novikov, “O skobkakh Puassona, sovmestimykh s algebraicheskoi geometriei i dinamikoi KdF na mnozhestve konechnozonnykh potentsialov”, DAN SSSR, 266:3 (1982), 533–537  mathscinet (cited: 7)  zmath  isi (cited: 8)
135. S. P. Novikov, “Hamiltonian formalism and variational-topological methods for finding periodic trajectories of conservative dynamical systems”, Mathematical physics reviews, v. 3, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 3, Harwood Academic Publ., Chur, 1982, 3–51  mathscinet (cited: 8)
136. S. P. Novikov, “Kommutiruyuschie operatory ranga $l>1$ s periodicheskimi koeffitsientami”, DAN SSSR, 263:6 (1982), 1311–1314  mathscinet (cited: 1)  zmath  isi (cited: 2)
137. S. P. Novikov, P. G. Grinevich, “Spectral theory of commuting operators of rank two with periodic coefficients”, Funct. Anal. Appl., 16:1 (1982), 19–20  mathnet  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 12)
138. S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 170)
139. S. P. Novikov, B. A. Dubrovin and I. M. Krichever, “Topological and algebraic-geometrical methods in contemporary mathematical physics”, Soviet Scientific Reviews, 3 (1982), 1–156

   1981
140. S. P. Novikov, “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, DAN SSSR, 260:1 (1981), 31–35  mathscinet (cited: 61)  zmath  isi (cited: 56)
141. S. P. Novikov, “Magnito-blokhovskie funktsii i vektornye rassloeniya. Tipichnye zakony dispersii i ikh kvantovye chisla”, DAN SSSR, 257:3 (1981), 538–543  mathscinet (cited: 6)  zmath  isi (cited: 26)
142. I. M. Krichever, S. P. Novikov, “Algebraic geometry and mathematical physics”, Proc. USA-USSR Conf., eds. V. E. Zakharov, S. V. Manakov, North-Holland, Amsterdam, 1981
143. S. P. Novikov, “Variational methods and periodic solutions of Kirchhoff-type equations. II”, Funct. Anal. Appl., 15:4 (1981), 263–274  mathnet  crossref  mathscinet  zmath  isi (cited: 16)  scopus (cited: 20)
144. S. P. Novikov, I. Shmel'tser, “Periodic solutions of Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207  mathnet  crossref  mathscinet  isi (cited: 16)  scopus (cited: 36)
145. S. P. Novikov, “Kirchhoff type equations and many-valued functions and functionals. Analogue of the Morse-Lyusternik-Shnirel'man theory and periodic orbits in a magnetic field”, Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics, Uspekhi Mat. Nauk, 36:5(221) (1981), 215–224  mathnet

   1980
146. V. G. Drinfel'd, I. M. Krichever, Yu. I. Manin, S. P. Novikov, “Methods of algebraic geometry in contemporary mathematical physics”, Mathematical physics reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 1–54  mathscinet (cited: 5)
147. B. A. Dubrovin, S. P. Novikov, “Ground states of a two-dimensional electron in a periodic magnetic field”, J. Experiment. Teoret. Phys., 52:3 (1980), 511–516  mathscinet  adsnasa
148. B. A. Dubrovin, S. P. Novikov, “Osnovnye sostoyaniya v periodicheskom pole. Magnito-blokhovskie funktsii i vektornye rassloeniya”, DAN SSSR, 253:6 (1980), 1293–1297  mathscinet (cited: 20)  zmath  isi (cited: 14)
149. V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, eds. S. P. Novikov, Nauka, M., 1980 , 320 pp.  mathscinet (cited: 81)
150. S. P. Novikov, “A method of solving the periodic problem for the KdV equations and its generalization”, Solitons, Topics in Current Physics, 17, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980, 325–338  crossref
151. S. P. Novikov, “Linear operators and integrable Hamiltonian systems”, Proc. Intern. Congr. Math. (Helsinki, 1978), Helsinki, 1980
152. I. M. Krichever, S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Russian Math. Surveys, 35:6 (1980), 53–79  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 104)

   1979
153. S. P. Novikov, “Algebraicheskaya geometriya i matematicheskaya fizika”, Tr. konferentsii po fundamentalnym problemam matematiki i teoreticheskoi fiziki, posvyaschennoi 70-letiyu so dnya rozhdeniya akademika N. N. Bogolyubova, Ob'edinennyi Institut Yadernykh issledovanii, Dubna, 1979, 459–473
154. I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i nelineinye uravneniya. Konechnozonnye resheniya ranga 2”, DAN SSSR, 247:1 (1979), 33–37  mathscinet (cited: 3)  zmath  isi (cited: 12)
155. B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 , 760 pp.  mathscinet (cited: 56)
156. V. L. Golo, M. I. Monastyrsky, S. P. Novikov, “Solutions to the Ginzburg-Landau equations for planar textures in superfluid $^{3}$He”, Comm. Math. Phys., 69:3 (1979), 237–246  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 4)  scopus (cited: 4)
157. O. I. Bogoyavlenskii, S. P. Novikov, “Metody kachestvennoi teorii dinamicheskikh sistem v obschei teorii otnositelnosti”, Nelineinye volny, Nauka, M., 1979, 164–176
158. O. I. Bogoyavlenskii, S. P. Novikov, “Konechnomernye kolebatelnye modeli v obschei teorii otnositelnosti i gazovoi dinamike”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 11, Zap. nauchn. sem. LOMI, 84, Izd-vo «Nauka», Leningrad. otd., L., 1979, 7–15  mathnet  mathscinet  zmath; O. I. Bogoyavlenskii, S. P. Novikov, “Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics”, J. Soviet Math., 21:3 (1983), 254–260  crossref  mathscinet  zmath  scopus

   1978
159. S. P. Novikov, “New applications of algebraic geometry to nonlinear equations and inverse problems”, Nonlinear evolution equations solvable by the spectral transform, Internat. Sympos. (Accad. Lincei, Rome, 1977), Res. Notes in Math., 26, Pitman, Boston, Mass., 1978, 84–96  mathscinet
160. S. P. Novikov, “Periodic solitons and algebraic geometry”, Mathematical problems in theoretical physics, Proc. Internat. Conf. (Univ. Rome, Rome, 1977), Lecture Notes in Phys., 80, Springer, Berlin, 1978, 222–228  crossref  mathscinet  adsnasa
161. S. P. Novikov, “Metod resheniya periodicheskoi zadachi dlya uravnenii Kortevega–de Friza i ego obobschenii”, Tr. Vses. konf. po uravneniyam s chastnymi proizvodnymi, posvyasch. 75-letiyu so dnya rozhd. akad. I. G. Petrovskogo, Izd-vo MGU, M., 1978, 184–185
162. S. P. Novikov, “A method for solving the periodic problem for the KdV equation and its generalizations”, Conference on the Theory and Applications of Solitons (Tucson, Ariz., 1976), Rocky Mountain J. Math., 8, no. 1-2, 1978, 83–93  crossref  mathscinet  zmath  scopus (cited: 3)
163. I. M. Krichever, S. P. Novikov, “Holomorphic bundles over Riemann surfaces and the Kadomtsev–Petviashvili equation. I”, Funct. Anal. Appl., 12:4 (1978), 276–286  mathnet  crossref  mathscinet  zmath  scopus (cited: 20)

   1976
164. B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, DAN SSSR, 229:1 (1976), 15–18  mathscinet (cited: 43)  zmath
165. O. I. Bogoyavlenskii, S. P. Novikov, “The relationship between Hamiltonian formalisms of stationary and nonstationary problems”, Funct. Anal. Appl., 10:1 (1976), 8–11  mathnet  crossref  mathscinet  zmath  scopus (cited: 35)
166. O. I. Bogoyavlenskii, S. P. Novikov, “Homogeneous models in general relativity and gas dynamics”, Russian Math. Surveys, 31:5 (1976), 31–48  mathnet  crossref  mathscinet  zmath
167. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146  mathnet  crossref  mathscinet  zmath

   1975
168. O. I. Bogoyavlenskii, S. P. Novikov, “Kachestvennaya teoriya odnorodnykh kosmologicheskikh modelei”, Tr. seminara im. I. G. Petrovskogo, 1, Izd-vo MGU, M., 1975, 7–43  mathscinet (cited: 1)

   1974
169. B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, DAN SSSR, 219:3 (1974), 531–534  mathscinet (cited: 14)  zmath
170. B. A. Dubrovin, S. P. Novikov, “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Physics JETP, 40:6 (1974), 1058–1063  mathscinet  adsnasa
171. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246  mathnet  crossref  mathscinet  zmath  scopus (cited: 193)

   1973
172. O. I. Bogoyavlenskiĭ, S. P. Novikov, “Singularities of the cosmological model of the Bianchi IX type according to the qualitative theory of differential equations”, Soviet Physics JETP, 37 (1973), 747–755  mathscinet  adsnasa  adsnasa

   1972
173. S. P. Novikov, “O nekotorykh svoistvakh kosmologicheskikh modelei”, ZhETF, 62:6 (1972), 1977–1990  adsnasa

   1971
174. Novikov S. P., “Analogues hermitiens de la $K$-théorie”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 39–45  mathscinet (cited: 1)
175. V. M. Buchstaber, A. S. Mishchenko, S. P. Novikov, “Formal groups and their role in the apparatus of algebraic topology”, Russian Math. Surveys, 26:2 (1971), 63–90  mathnet  crossref  mathscinet  zmath
176. V. M. Buchstaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116  mathnet  crossref  mathscinet  zmath

   1970
177. S. P. Novikov, “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Essays on Topology and Related Topics, Mémoires dédiés à Georges de Rham, Springer, New York, 1970, 147–155  crossref  mathscinet (cited: 3)
178. S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292  mathnet  crossref  mathscinet  zmath
179. S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. II”, Math. USSR-Izv., 4:3 (1970), 479–505  mathnet  crossref  mathscinet  zmath

   1968
180. S. P. Novikov, “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Proc. Internat. Congr. Math. (Moscow, 1966), Amer. Math. Soc., Providence, RI, 1968, 172–179  mathscinet (cited: 1)  zmath
181. S. P. Novikov, “Adams operators and fixed points”, Math. USSR-Izv., 2:6 (1968), 1193–1211  mathnet  crossref  mathscinet  zmath

   1967
182. S. P. Novikov, “Koltsa operatsii i spektralnye posledovatelnosti tipa Adamsa v ekstraordinarnykh teoriyakh kogomologii, $U$-kobordizmy i $K$-teoriya”, DAN SSSR, 172 (1967), 33–36  mathscinet  zmath
183. S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913  mathnet  crossref  mathscinet  zmath

   1966
184. S. P. Novikov, Soviet Math. Dokl., 7 (1966), 1508–1512  mathscinet  zmath
185. S. P. Novikov, B. Yu. Sternin, “Traces of elliptic operators on submanifolds and $K$K-theory”, Soviet Math. Dokl., 7 (1966), 1373–1376  mathscinet  zmath
186. S. P. Novikov, “Kharakteristicheskie klassy Pontryagina”, Mezhd. kongr. mat., Tezisy dokladov, M., 1966, 158–159
187. S. P. Novikov, “The Cartan–Serre theorem and intrinsic homology”, Russian Math. Surveys, 21:5 (1966), 209–224  mathnet  crossref  mathscinet  zmath
188. S. P. Novikov, “On manifolds with free abelian fundamental group and their application”, Izv. Akad. Nauk SSSR Ser. Mat., 30:1 (1966), 207–246  mathnet  mathscinet  zmath

   1965
189. S. P. Novikov, “Topologicheskaya invariantnost ratsionalnykh klassov Pontryagina”, DAN SSSR, 163:3 (1965), 298–300  mathscinet (cited: 16)  zmath
190. S. P. Novikov, “Gomotopicheskaya i topologicheskaya invariantnost nekotorykh ratsionalnykh klassov Pontryagina”, DAN SSSR, 162:6 (1965), 1248–1251  mathscinet (cited: 1)  zmath
191. S. P. Novikov, “Struktury na mnogoobraziyakh”, Trudy 4-i Vses. Topol. Konf. (Tashkent, 1963), 1965, 98–120
192. S. P. Novikov, “New ideas in algebraic topology ($K$-theory and its applications)”, Russian Math. Surveys, 20:3 (1965), 37–62  mathnet  crossref  mathscinet  zmath
193. S. P. Novikov, “Rational Pontrjagin classes. Homeomorphism and homotopy type of closed manifolds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 29:6 (1965), 1373–1388  mathnet  mathscinet  zmath
194. S. P. Novikov, “Differentiable sphere bundles”, Izv. Akad. Nauk SSSR Ser. Mat., 29:1 (1965), 71–96  mathnet  mathscinet  zmath
195. S. P. Novikov, “Topology of foliations”, Trans. Mosc. Math. Soc., 14 (1965), 268–304  mathnet  mathscinet  zmath

   1964
196. S. P. Novikov, “Smooth foliations on three-dimensional manifolds”, Russian Math. Surveys, 19:6 (1964), 79–81  mathnet  crossref  mathscinet  zmath
197. S. P. Novikov, I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “The main trends of algebraic topology and algebraic geometry”, Russian Math. Surveys, 19:6 (1964), 67–73  mathnet  crossref  mathscinet  zmath
198. S. P. Novikov, “Homotopically equivalent smooth manifolds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 28:2 (1964), 365–474  mathnet  mathscinet  zmath
199. M. I. Vishik, S. P. Novikov, M. M. Postnikov, “The Gor'kii Mathematical Seminar on Homotopic Topology”, Uspekhi Mat. Nauk, 19:6(120) (1964), 237–238  mathnet
200. S. P. Novikov, “Foliations of codimension 1”, Sov. Math. Dokl., 1964, no. 5, 1023–1025  mathscinet  zmath
201. S. P. Novikov, “Foliations of codimension 1 on manifolds”, Sov. Math. Dokl., 5 (1964), 540–544  mathscinet  zmath

   1963
202. S. P. Novikov, “Nekotorye svoistva mnogoobrazii razmernosti $4k+2$”, DAN SSSR, 153:5 (1963), 1005–1008  mathscinet  zmath
203. S. P. Novikov, “Gomotopicheskie svoistva gruppy diffeomorfizmov sfery”, DAN SSSR, 148:1 (1963), 32–35  mathnet  mathscinet (cited: 1)  mathscinet (cited: 1)  zmath
204. S. P. Novikov, “Differential topology”, Itogi Nauki. Algebra. Topol. 1962, VINITI, Moscow, 1963, 134–160  mathnet  mathscinet  zmath

   1962
205. S. P. Novikov, “O diffeomorfizme odnosvyaznykh mnogoobrazii”, DAN SSSR, 143:5 (1962), 1046–1049  mathnet  mathscinet (cited: 2)  mathscinet (cited: 2)  zmath
206. S. P. Novikov, “Smooth manifolds of a general homotopy type”, Intern. Cong. Math., section 4, Stockholm, 1962, 139
207. S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb. (N.S.), 57(99):4 (1962), 407–442  mathnet  mathscinet  zmath

   1961
208. S. P. Novikov, “O vlozhenii odnosvyaznykh mnogoobrazii v evklidovo prostranstvo”, DAN SSSR, 138:4 (1961), 775–778  mathnet (cited: 1)  mathscinet (cited: 1)  mathscinet (cited: 1)  zmath

   1960
209. S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720  mathnet  mathscinet  mathscinet  zmath

   1959
210. S. P. Novikov, “O kogomologiyakh algebry Stinroda”, DAN SSSR, 128:5 (1959), 893–895  mathscinet (cited: 3)  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2017