Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Vatutin Vladimir Alekseevich
(full list of publications)
| by years | scientific publications | by types |


1. V. A. Vatutin, E. E. D'yakonova, Diskr. Mat. (to appear)  mathnet

   2018
2. Minzhi Liu, Vladimir Vatutin, Reduced critical processes for small populations, 2018 , 10 pp., arXiv: 1801.03217 [math.PR]

   2017
3. Vincent Bansaye, Vladimir Vatutin, “On the survival probability for a class of subcritical branching processes in random environment”, Bernoulli, 23:1 (2017), 58–88 , arXiv: 1307.3963  mathnet  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)
4. V. A. Vatutin, “A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles”, Math. Notes, 101:5 (2017), 778–789  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
5. Vladimir Vatutin, Elena Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 , arXiv: 1603.03199  mathnet  crossref  isi  scopus
6. V. A. Vatutin, E. E. D'yakonova, “Multitype branching processes in random environment: survival probability for the critical case”, Teor. Veroyatnost. i Primenen., 62:4 (2017), 634–653  mathnet  crossref  elib
7. Götz Kersting, Vladimir Vatutin, Discrete Time Branching Processes in Random Environment, Wiley, John Wiley & Sons, Inc.New Jersey, USA; ISTE, London, UK, 2017 , 306 pp. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1786302527.html
8. Wenming Hong, Minzhi Liu, Vladimir Vatutin, Limit theorems for supercritical MBPRE with linear fractional offspring distributions, 2017 , 25 pp., arXiv: 1710.08724
9. Valentin Topchii, Vladimir Vatutin, “Moments for multitype critical Bellman-Harris processes with long-living particles”, 39-th conference on Stochastic Processes and Their Applications (Moskva, 23–27 iyulya 2017 g.), Moskva, 2017, 116 http://www.spa2017.org/images/upload_slides/Book-of-abstracts.pdf
10. V. A. Vatutin, V. A. Topchii, “Moments of multitype critical Bellman–Harris processes in which tails of life-length distributions of particles have different orders”, Sib. Èlektron. Mat. Izv., 14 (2017), 1248–1264  mathnet  crossref
11. Vladimir Vatutin, Vitali Wachtel, Subcritical multitype branching process in random environment, 2017 , 9 pp., Prinyata k publikatsii v zhurnal Advances in Applied Probabilty, Special Volume 50A (2018), arXiv: 1711.07453

   2016
12. C. Smadi, V. A. Vatutin, “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Processes Relat. Fields, 22:2 (2016), 311–358 , arXiv: 1508.06653  mathnet  isi (cited: 1)
13. V. A. Vatutin, E. E. Dyakonova, How many families survive for a long time?, 2016 , 23 pp., arXiv: 1608.08062
14. Vladimir Vatutin, “Subcritical Branching Processes in Random Environment”, Workshop on Branching Processes and their Applications, WBPA 2015 (Badajoz (Spain), 6–11 April, 2015), Lecture Notes in Stat., 219, eds. I. M. del Puerto et al., 2016, 97–115  mathnet  crossref  isi (cited: 1)  elib  scopus (cited: 1)
15. V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Teor. Veroyatnost. i Primenen., 61:4 (2016), 709–732  mathnet  crossref  mathscinet  elib

   2015
16. V. Vatutin, A. Iksanov, V. Topchii, “A two-type Bellman–Harris process initiated by a large number of particles”, Acta Appl. Math., 138:1 (2015), 279–312 , arXiv: 1311.1060  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
17. Vladimir Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 , arXiv: 1403.0746  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib

   2016
18. V. A. Vatutin, “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119  mathnet  crossref  crossref  mathscinet (cited: 5)  mathscinet (cited: 5)  zmath  isi (cited: 1)  elib  elib  scopus

   2015
19. V. A. Topchii, V. A. Vatutin, A. M. Iksanov, “Extinction of a two-type Bellman-Harris process generated by a large number of particles”, XVI-th International Summer Conference on Probability and Statistics, Seminar on Statistical Data Analysis, Workshop on Branching processes and Applications (Pomorie, Bulgaria, 21–29 June 2014), Pliska Stud. Math. Bulgar., 24, 2015, 89–98  mathnet
20. V. A. Vatutin, E. E. D'yakonova, “Decomposable Branching Processes with a Fixed Extinction Moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124  mathnet  crossref  crossref  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)

   2016
21. Vladimir A. Vatutin, Elena E. Dyakonova, “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 , arXiv: 1509.00759  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus

   2014
22. V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127  mathnet  crossref  mathscinet (cited: 9)  zmath  adsnasa  isi (cited: 10)  elib (cited: 4)  scopus (cited: 10)

   2015
23. V. A. Vatutin, A. Iksanov, A. V. Marynych, “Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli”, Theory Probab. Appl., 59:1 (2015), 87–113  mathnet  crossref  crossref  isi (cited: 6)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 5)

   2014
24. V. Vatutin, “Macroscopic and microscopic sutructures of the family tree for a critical decomposable branching process”, Abstracts of the Intrenational Congress of Mathematicians (Seoul, Korea, August 13–21, 2014), Abstracts. Short Communications. Posters Sessions, Seoul ICM 2014, Organizing Committee, Seoul, Korea, 2014, 431
25. D. Denisov, V. Vatutin, V. Wachtel, “Local probabilities for random walks with negative drift conditioned to stay nonnegative”, Electronic Journal of Probability, 19 (2014), 88 , 17 pp.  mathnet  crossref  mathscinet  zmath  isi  elib  scopus (cited: 1)
26. V. Bansaye, V. Vatutin, “Random walk with heavy tail and negative drift conditioned by its minimum and final values”, Markov Processes and Related Fields, 20:4 (2014), 633–652 , arXiv: 1312.3306  mathnet  isi (cited: 1)  elib  scopus (cited: 1)

   2015
27. V. A. Vatutin, “The structure of decomposable reduced branching processes. I. Finitedimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)

   2014
28. Vladimir Vatutin, Macroscopic and microscopic structures of the family tree for the decomposable critical branching processes, 2014 , 37 pp., arXiv: 1402.6819v1

   2013
29. S. Sagitov, B. Mehlig B. P. Jagers, V. Vatutin, “Evolutionary branching in a stochastic population model with discrete mutational steps”, Theoretical Population Biology, 83 (2013), 145–154  mathnet  crossref  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
30. V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Proc. Steklov Inst. Math., 282 (2013), 243–272  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)
31. V. A. Vatutin, E. E. D'yakonova, S. Sagitov, “Evolution of Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242  mathnet  crossref  crossref  mathscinet  isi (cited: 5)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 5)

   2014
32. V. A. Vatutin, V. A. Topchii, “A Key Renewal Theorem for Heavy Tail Distributions with $\beta\in(0,0.5]$”, Theory Probab. Appl., 58:2 (2014), 333–342  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)

   2013
33. A. Iksanov, A. Marynych, V. Vatutin, Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve, 2013 , 26 pp., arXiv: 1304.4469
34. V. Vatutin, E. E. Dyakonova, P. Jagers, S. Sagitov, “Decomposable branching processes in a Markovian random environment”, Abstracts of communications of the Russian-Chinese Seminar on the asymptotic methods in probability theory and mathematical statistics (St. Petersburg, 10–14 June, 2013), St. Petersburg State University, St. Petersburg, 2013, 36
35. Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environments”, Proceedings 59-th ISI World Statistics Congress, 25–30 August 2013, Hong Kong (Hong Kong, 25–30 August 2013), International Statistical Institute, The Hague, The Netherlands, 2013, 1744-1749 http://2013.isiproceedings.org/Files/STS033-P3-S.pdf

   2012
36. V. A. Vatutin, “Total Population Size in Critical Branching Processes in a Random Environment”, Math. Notes, 91:1 (2012), 12–21  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)
37. V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732  mathnet  crossref  mathscinet (cited: 16)  zmath  isi (cited: 19)  elib (cited: 11)  scopus (cited: 18)
38. V. Vatutin, X Zheng, “Subcritical branching processes in a random environment without the Cramer condition”, Stochastic Process. Appl., 122:7 (2012), 2594-2609  mathnet  crossref  mathscinet (cited: 3)  zmath  isi (cited: 6)  elib (cited: 1)  scopus (cited: 6)

   2013
39. V. A. Vatutin, Q. Liu, “Critical branching process with two types of particles evolving in asynchronous random environments”, Theory Probab. Appl., 57:2 (2013), 279–305  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   2012
40. V. Vatutin, V. Wachtel, “Gnedenko-Stone local limit theorems for random walks conditioned to stay positive”, Modern stochastics: Theory and Applications III (Kyiv, Ukraine, September 10–14, 2012), Conference materials, Kievskii universitet, Kiev, 2012, 45 http://probability.univ.kiev.ua/msta3conf/datas/users/msta_main.pdf
41. Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environment”, 8-the World Congress in Probability and Statistics (Istanbul, Turkey, July 09–14, 2012), Programm and Abstracts, Bernoulli Society, 2012, 182–183 http://www.worldcong2012.org/ContributedTalks.pdf
42. V. A. Vatutin, V. A. Topchii, “Dvukhtipnye protsessy Bellmana-Kharrisa, startuyuschie s bolshogo chisla chastits”, Mezhdunarodnaya konferentsiya «Teoriya veroyatnostei i ee prilozheniya» (Moskva, 26–30 iyunya 2012 g.), Tezisy dokladov, eds. A. N. Shiryaev, A. V. Lebedev, LENAND, Moskva, 2012, 24–25
43. V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 , 24 pp.  mathnet  crossref  crossref  mathscinet (cited: 2)  zmath  scopus (cited: 4)

   2011
44. V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Advances in Mathematics, 21:1 (2011), 42–72  mathnet  crossref  mathscinet  zmath  elib  elib  scopus (cited: 1)

   2012
45. Y. Hu, V. A. Topchii, V. A. Vatutin, “Branching Random Walk in $\mathbf Z^4$ with Branching at the Origin Only”, Theory Probab. Appl., 56:2 (2012), 193–212  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus

   2011
46. F. C. Klebaner, S. Sagitov, V. A. Vatutin, P. Haccou, P. Jagers, “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5:2 (2011), 147–162  crossref  mathscinet (cited: 5)  elib (cited: 9)  scopus (cited: 12)

   2013
47. V. A. Vatutin, V. A. Topchiǐ, “Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin”, Siberian Adv. Math., 23:2 (2013), 125–153  mathnet  mathnet  crossref  mathscinet  elib  scopus (cited: 3)

   2010
48. V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177  mathnet  crossref  crossref  mathscinet  elib  scopus (cited: 2)

   2011
49. V. A. Vatutin, “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)

   2010
50. C. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350  mathscinet (cited: 8)
51. S. Sagitov, P. Jagers, V. Vatutin, “Coalescent approximation for structured populations in a stationary random environment.”, Theoretical Population Biology, 78:3 (2010), 192–199  crossref  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)
52. V. Vatutin, “A refinement of limit theorems for the critical branching processes in random environment”, Workshop on Branching Processes and their Applications, Lect. Notes Stat. Proc., 197, Part 1, Springer, Berlin, 2010, 3–19  crossref  mathscinet (cited: 1)

   2009
53. V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217  crossref  mathscinet (cited: 25)  zmath  isi (cited: 30)  elib (cited: 27)  scopus (cited: 31)
54. V. A. Vatutin, “Sudden death versus slow extinction for branching processes in random environment”, Proceedings of the 33th SPA conference, Berlin, 2009, 43
55. V. A. Vatutin, Branching Bellman-Harris processes, Lekts. Kursy NOC, 12, Steklov Math. Inst., RAS, Moscow, 2009 , 112 pp.  mathnet  mathnet  crossref  crossref  zmath  elib

   2010
56. V. A. Vatutin, V. I. Vakhtel', “Sudden extinction of the critical branching process in random environment”, Theory Probab. Appl., 54:3 (2010), 466–484  mathnet  crossref  crossref  mathscinet (cited: 3)  isi (cited: 7)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 4)

   2008
57. V. A. Vatutin, A. E. Kyprianou, “Branching processes in random environment die slowly”, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 375–395  mathscinet (cited: 4)
58. V. A. Vatutin, Branching process and their application, Lekts. Kursy NOC, 8, Steklov Math. Inst., RAS, Moscow, 2008 , 108 pp.  mathnet  mathnet  crossref  crossref  zmath  elib

   2009
59. V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 1)

   2007
60. P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., Cambridge Univ. Press, Cambridge, 2007 , xii+316 pp.  mathscinet (cited: 85)
61. V. Vatutin, J. Xiong, “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 997–1012  crossref  mathscinet (cited: 5)  zmath  isi (cited: 5)  elib (cited: 8)  scopus (cited: 7)

   2008
62. V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492  mathnet  crossref  crossref  mathscinet  isi (cited: 5)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 4)
63. V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)

   2006
64. K. A. Borovkov, V. A. Vatutin, “On the asymptotic behaviour of random recursive trees in random environments”, Adv. in Appl. Probab., 38:4 (2006), 1047–1070  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)

   2007
65. V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 17)  elib (cited: 11)  elib (cited: 11)  scopus (cited: 13)

   2005
66. K. Fleischmann, V. A. Vatutin, “Multi-scale clustering for a non-Markovian spatial branching process”, J. Theoret. Probab., 18:4 (2005), 719–755  crossref  mathscinet  zmath  isi  elib  scopus
67. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676  crossref  mathscinet (cited: 23)  zmath  isi (cited: 25)  elib (cited: 25)  scopus (cited: 25)
68. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673  crossref  mathscinet (cited: 51)  zmath  isi (cited: 62)  elib (cited: 55)  scopus (cited: 60)

   2004
69. V. Topchii, V. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 387–395  mathscinet (cited: 4)  zmath
70. V. Vatutin, E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 375–385  mathscinet (cited: 5)  zmath
71. E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306  mathscinet (cited: 6)  zmath

   2005
72. V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 4)  scopus (cited: 6)
73. V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 17)  elib (cited: 11)  scopus (cited: 14)

   2004
74. V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 (2005)  mathscinet  zmath

   2003
75. V. Topchii, V. Vatutin, “Individuals at the origin in the critical catalytic branching random walk”, Discrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 325–332  mathscinet (cited: 10)
76. J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 39:4 (2003), 593–620  crossref  mathscinet (cited: 26)  zmath  adsnasa  isi (cited: 28)  elib (cited: 25)  scopus (cited: 28)

   2004
77. V. A. Vatutin, “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 481–492  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 12)  elib (cited: 5)  scopus (cited: 6)
78. V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 18)  elib (cited: 14)  scopus (cited: 17)

   2003
79. P. Haccou, and V. Vatutin, “Establishment success and extinction risk in autocorrelated environments”, Theoretical Population Biology, 64:3 (2003), 303–314  crossref  zmath  isi (cited: 22)  elib (cited: 21)  scopus (cited: 22)

   2002
80. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes and some queueing systems”, J. Math. Sci. (New York), 111:6 (2002), 3901–3911  crossref  mathscinet (cited: 3)  zmath  elib (cited: 7)  scopus (cited: 8)
81. V. Vatutin, E. Dyakonova, “Reduced branching processes in random environment”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 455–467  mathscinet (cited: 6)  zmath
82. U. Rösler, V. Topchii, V. Vatutin, “Convergence rate for stable weighted branching processes”, Mathematics and computer science (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 441–453  mathscinet (cited: 5)
83. V. A. Vatutin, U. Rösler, V. A. Topchii, “The Rate of Convergence for Weighted Branching Processes”, Siberian Adv. Math., 12:4 (2002), 57–82  mathnet  mathscinet (cited: 2)  mathscinet (cited: 2)  zmath  elib

   2003
84. A. Wakolbinger, V. A. Vatutin, K. Fleischmann, “Branching systems with long-living particles at the critical dimension”, Theory Probab. Appl., 47:3 (2003), 429–454  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  scopus (cited: 4)
85. V. A. Vatutin, “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 4)  scopus (cited: 6)

   2001
86. V. A. Vatutin, E. E. Dyakonova, “The survival probability of a critical multitype Galton-Watson branching process”, J. Math. Sci. (New York), 106:1 (2001), 2752–2759  crossref  mathscinet (cited: 2)  zmath  elib (cited: 2)  scopus (cited: 2)
87. U. Rösler, V. A. Topchii, V. A. Vatutin, “High-level overshoot for a class of random sequences”, Siberian Adv. Math., 11:3 (2001), 60–72  mathscinet

   2000
88. V. A. Vatutin, “Linear functionals for critical multitype Galton-Watson branching processes”, J. Math. Sci. (New York), 99:4 (2000), 1502–1509  crossref  mathscinet (cited: 1)  zmath  elib (cited: 1)  scopus (cited: 1)
89. K. Fleischmann, V. Vatutin A., “An integral test for a critical multitype spatially homogeneous branching particle process and a related reaction-diffusion system”, Probab. Theory Related Fields, 116:4 (2000), 545–572  crossref  mathscinet (cited: 1)  zmath  isi (cited: 2)  elib (cited: 2)  scopus (cited: 2)
90. U. Rösler, V. A. Topchii, V. A. Vatutin, “Convergence conditions for weighted branching processes”, Discrete Math. Appl., 10:1 (2000), 5–21  mathnet  crossref  mathscinet  zmath  elib (cited: 3)  scopus (cited: 6)

   2001
91. V. A. Vatutin, K. Fleischmann, “Deviations from typical type proportions in critical multitype Galton–Watson processes”, Theory Probab. Appl., 45:1 (2001), 23–40  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   2000
92. V. A. Vatutin, “On the embeddability probability of a random hypergraph with coloured edges into a bipartite graph”, Tr. Diskr. Mat., 3, Fizmatlit, Moscow, 2000, 29–36  mathnet

   1999
93. K. Fleischmann, V. Vatutin A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. in Appl. Probab., 31:1 (1999), 88–111  crossref  mathscinet (cited: 10)  zmath  isi (cited: 15)  elib (cited: 15)  scopus (cited: 13)
94. A. Wakolbinger, V. A. Vatutin, “Spatial branching populations with long individual lifetimes”, Theory Probab. Appl., 43:4 (1999), 620–632  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)

   1997
95. M. Drmota, V. Vatutin, “Limiting distributions in branching processes with two types of particles”, Classical and modern branching processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, 89–110  crossref  mathscinet (cited: 2)  zmath
96. K. A. Borovkov, V. A. Vatutin, “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240  crossref  mathscinet (cited: 4)  zmath  isi (cited: 10)  elib (cited: 9)  scopus (cited: 10)
97. V. A. Vatutin, E. E. D'yakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496  mathnet  crossref  mathscinet  zmath  scopus (cited: 4)

   1998
98. V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab. Appl., 42:1 (1998), 17–27  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)

   1996
99. K. A. Borovkov, V. A. Vatutin, “On distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622  crossref  mathscinet (cited: 10)  zmath  isi (cited: 16)  elib (cited: 19)  scopus (cited: 18)
100. V. A. Vatutin, V. G. Mikhailov, “On the number of readings of random nonequiprobable files under stable sorting”, Discrete Math. Appl., 6:3 (1996), 207–223  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
101. V. A. Vatutin, “The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent”, Discrete Math. Appl., 6:1 (1996), 41–52  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   1997
102. V. A. Vatutin, V. G. Mikhailov, “Asymptotic properties of matrices related to mappings of partitions”, Theory Probab. Appl., 41:2 (1997), 318–325  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus

   1996
103. V. A. Vatutin, “On the explosiveness of nonhomogeneous age-dependent branching processes”, Theory Probab. Math. Statist., 1996, no. 52, 39–42  mathscinet  zmath

   1995
104. V. A. Vatutin, V. G. Mikhailov, “Some estimates for the distribution of the height of a tree for digital searching”, Discrete Math. Appl., 5:4 (1995), 289–300  mathnet  mathscinet  zmath  scopus
105. V. G. Mikhailov, V. A. Vatutin, “Statistical estimation of the entropy of discrete random variables with a large number of outcomes”, Russian Math. Surveys, 50:5 (1995), 963–976  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)
106. V. A. Vatutin, “On the maximum of a simple random walk”, Theory Probab. Appl., 40:2 (1995), 398–402  mathnet  crossref  mathscinet  zmath  isi

   1994
107. V. A. Vatutin, “On the height of the trunk of random rooted trees”, Discrete Math. Appl., 4:4 (1994), 351–360  mathnet  mathscinet  zmath  scopus (cited: 1)
108. V. A. Vatutin, “Limit theorems for the number of ascending segments in random permutations generated by sorting algorithms”, Discrete Math. Appl., 4:1 (1994), 31–44  mathnet  mathscinet  zmath  scopus (cited: 4)
109. V. A. Vatutin, “Branching processes with final types of particles and random trees”, Theory Probab. Appl., 39:4 (1994), 628–641  mathnet  crossref  mathscinet  zmath  isi (cited: 1)

   1993
110. V. A. Vatutin, “The total number of particles in a reduced Bellman–Harris branching process”, Theory Probab. Appl., 38:3 (1993), 567–571  mathnet  crossref  mathscinet  zmath  isi
111. V. A. Vatutin, “The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height”, Theory Probab. Appl., 38:2 (1993), 330–341  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
112. V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485  crossref  mathscinet (cited: 11)  zmath  scopus (cited: 27)
113. V. A. Vatutin, “The limit theorem for Bellman–Harris process with final types”, Proc. Steklov Inst. Math., 200 (1993), 83–92  mathnet  mathscinet  zmath

   1991
114. V. A. Vatutin, S. M. Sagitov, “A critical branching process: the remote past given a favorable present”, Theory Probab. Appl., 36:1 (1991), 86–98  mathnet  crossref  mathscinet  zmath  isi
115. V. A. Vatutin, N. M. Yanev, “A multidimensional critical Galton–Watson branching process with final types”, Discrete Math. Appl., 1:3 (1991), 321–333  mathnet  mathscinet  zmath

   1989
116. V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Tupes. II”, Theory Probab. Appl., 34:2 (1989), 216–227  mathnet  crossref  mathscinet  zmath  isi

   1988
117. V. A. Vatutin, S. M. Sagitov, “Critical decomposable Bellman–Harris processes with two types of particles”, Math. Notes, 43:2 (1988), 157–161  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
118. V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Types. I”, Theory Probab. Appl., 33:3 (1988), 460–472  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1989
119. V. A. Vatutin, “Asymptotic properties of Bellman–Harris critical branching processes starting with a large number of particles”, Stability problems for stochastic models, J. Soviet Math., 47:5 (1989), 2673–2681  crossref  mathscinet  scopus

   1986
120. N. M. Yanev, V. A. Vatutin, K. V. Mitov, “Critical branching migration processes with an absorbing barrier at zero”, Mathematics and mathematical education (Sl'nchev Bryag, 1986), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 511–517  mathscinet
121. V. A. Vatutin, S. M. Sagitov, “A decomposable critical Bellman-Harris branching process with two types of particles”, Dokl. AN SSSR, 291:5 (1986), 1040–1043  mathnet  mathscinet
122. V. A. Vatutin, “Critical Bellman–Harris branching processes starting with a large number of particles”, Math. Notes, 40:4 (1986), 803–811  mathnet  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 3)

   1988
123. V. A. Vatutin, S. M. Sagitov, “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177 (1988), 1–19  mathnet  mathscinet  zmath

   1987
124. V. A. Vatutin, “Critical branching Bellman–Harris process of final type”, Theory Probab. Appl., 31:3 (1987), 428–438  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
125. V. A. Vatutin, “Sufficient regularity conditions for Bellman–Harris branching processes”, Theory Probab. Appl., 31:1 (1987), 50–57  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
126. V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475  mathnet  crossref  mathscinet  zmath  scopus (cited: 6)

   1984
127. K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Critical Galton–Watson processes with decreasing immigration depending on the state of the process”, Serdica, 10:4 (1984), 412–424  mathscinet  zmath
128. K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Continuous-time branching processes with decreasing state-dependent immigration”, Adv. in Appl. Probab., 16:4 (1984), 697–714  crossref  mathscinet (cited: 2)  zmath  isi (cited: 6)

   1983
129. V. A. Vatutin, “Branching processes with infinite variance”, Fourth international summer school on probability theory and mathematical statistics (Varna, 1982), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 9–38  mathscinet (cited: 1)  zmath
130. V. A. Vatutin, V. G. Mihaǐlov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743  mathnet  crossref  mathscinet  zmath  isi (cited: 5)
131. V. A. Vatutin, “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158 (1983), 9–31  mathnet  mathscinet  zmath

   1982
132. V. A. Vatutin, “On a class of limit theorems for a critical Bellman–Harris branching process”, Theory Probab. Appl., 26:4 (1982), 806–812  mathnet  crossref  mathscinet  zmath  isi

   1981
133. V. A. Vatutin, “On a class of the critical multitype Bellman–Harris branching processes”, Theory Probab. Appl., 25:4 (1981), 760–771  mathnet  crossref  mathscinet  zmath  isi (cited: 3)

   1979
134. V. A. Vatutin, “Distance to the nearest common ancestor in bellman-harris branching processes”, Math. Notes, 25:5 (1979), 378–382  mathnet  crossref  mathscinet  zmath  elib (cited: 5)  scopus (cited: 6)

   1980
135. V. A. Vatutin, “A new limit theorem for the critical Bellman–Harris branching process”, Math. USSR-Sb., 37:3 (1980), 411–423  mathnet  crossref  mathscinet  zmath  isi (cited: 2)
136. V. A. Vatutin, “Discrete limit distributions of the number of particles in a multitype age-dependent branching processes”, Theory Probab. Appl., 24:3 (1980), 509–520  mathnet  crossref  mathscinet  zmath  isi (cited: 9)

   1979
137. V. A. Vatutin, “Limit theorem for a critical multitype Bellman–Harris branching process with infinite second moments”, Theory Probab. Appl., 23:4 (1979), 776–788  mathnet  crossref  mathscinet  zmath  isi (cited: 5)

   1977
138. V. A. Vatutin, “A conditional limit theorem for a critical Branching process with immigration”, Math. Notes, 21:5 (1977), 405–411  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 4)
139. V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225  mathnet  crossref  mathscinet  zmath  isi (cited: 8)
140. V. A. Vatutin, “Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles”, Math. USSR-Sb., 31:1 (1977), 95–107  mathnet  crossref  mathscinet  zmath  isi

   1978
141. V. A. Vatutin, “A critical Galton–Watson branching process with emigration”, Theory Probab. Appl., 22:3 (1978), 465–481  mathnet  crossref  mathscinet  zmath

   1977
142. V. A. Vatutin, “Discrete distributions of the number of particles in critical Bellman–Harris branching processes”, Theory Probab. Appl., 22:1 (1977), 146–152  mathnet  crossref  mathscinet  zmath
143. V. A. Vatutin, “Asymptotic behaviour of the non-extinction probability for a critical branching process”, Theory Probab. Appl., 22:1 (1977), 140–146  mathnet  crossref  mathscinet  zmath

   1976
144. V. A. Vatutin, “Uslovie regulyarnosti vetvyaschegosya protsessa Bellmana–Kharrisa”, Dokl. AN SSSR, 230:1 (1976), 15–18  mathscinet (cited: 1)  zmath

   1977
145. V. A. Vatutin, “A limit theorem for a critical age-dependent branching process with infinite variance”, Theory Probab. Appl., 21:4 (1977), 839–842  mathnet  crossref  mathscinet  zmath
146. V. A. Vatutin, “Critical multitype age-dependent branching process with immigration”, Theory Probab. Appl., 21:2 (1977), 435–442  mathnet  crossref  mathscinet  zmath

   1974
147. V. A. Vatutin, “The asymptotic probability of the first degeneration for branching processes with immigration”, Theory Probab. Appl., 19:1 (1974), 25–34  mathnet  crossref  mathscinet  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2018