Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | Zentralblatt MATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Vatutin Vladimir Alekseevich
(full list of publications)
| by years | scientific publications | by types |



   2017
1. Vincent Bansaye, Vladimir Vatutin, “On the survival probability for a class of subcritical branching processes in random environment”, Bernoulli, 23:1 (2017), 58–88 , arXiv: 1307.3963  mathnet  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)
2. V. A. Vatutin, “A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles”, Math. Notes, 101:5 (2017), 778–789  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
3. Vladimir Vatutin, Elena Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 , arXiv: 1603.03199  mathnet  crossref  isi  scopus

   2016
4. C. Smadi, V. A. Vatutin, “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Processes Relat. Fields, 22:2 (2016), 311–358 , arXiv: 1508.06653  mathnet  isi (cited: 1)
5. V. A. Vatutin, E. E. Dyakonova, How many families survive for a long time?, 2016 , 23 pp., arXiv: 1608.08062
6. Vladimir Vatutin, “Subcritical Branching Processes in Random Environment”, Workshop on Branching Processes and their Applications, WBPA 2015 (Badajoz (Spain), 6–11 April, 2015), Lecture Notes in Stat., 219, eds. I. M. del Puerto et al., 2016, 97–115  mathnet  crossref  isi (cited: 1)  elib  scopus (cited: 1)
7. V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Teor. Veroyatnost. i Primenen., 61:4 (2016), 709–732  mathnet  crossref  elib

   2015
8. V. Vatutin, A. Iksanov, V. Topchii, “A two-type Bellman–Harris process initiated by a large number of particles”, Acta Appl. Math., 138:1 (2015), 279–312 , arXiv: 1311.1060  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
9. Vladimir Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 , arXiv: 1403.0746  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib
10. V. A. Vatutin, “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. II. Funktsionalnye predelnye teoremy”, TVP, 60:1 (2015), 25–44  mathnet (cited: 2)  crossref  mathscinet (cited: 1)  zmath  elib; V. A. Vatutin, “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119  crossref  mathscinet (cited: 5)  mathscinet (cited: 5)  zmath  isi (cited: 1)  elib  scopus
11. V. A. Topchii, V. A. Vatutin, A. M. Iksanov, “Extinction of a two-type Bellman-Harris process generated by a large number of particles”, XVI-th International Summer Conference on Probability and Statistics, Seminar on Statistical Data Analysis, Workshop on Branching processes and Applications (Pomorie, Bulgaria, 21–29 June 2014), Pliska Stud. Math. Bulgar., 24, 2015, 89–98  mathnet
12. V. A. Vatutin, E. E. D'yakonova, “Decomposable Branching Processes with a Fixed Extinction Moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124  mathnet  crossref  crossref  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
13. V. A. Vatutin, E. E. Dyakonova, “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 28:4 (2015), 26–37  mathnet (cited: 4)  crossref  mathscinet  zmath  elib (cited: 1); Vladimir A. Vatutin, Elena E. Dyakonova, “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 , arXiv: 1509.00759  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus

   2014
14. V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127  mathnet  crossref  mathscinet (cited: 9)  zmath  adsnasa  isi (cited: 6)  elib (cited: 4)  scopus (cited: 8)
15. V. A. Vatutin, A. M. Iksanov, A. V. Marinich, “Slabaya skhodimost konechnomernykh raspredelenii chisla pustykh yaschikov resheta Bernulli”, TVP, 59:1 (2014), 28–60  mathnet (cited: 4)  crossref  elib; V. A. Vatutin, A. Iksanov, A. V. Marynych, “Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli”, Theory Probab. Appl., 59:1 (2015), 87–113  crossref  isi (cited: 4)  elib (cited: 2)  scopus (cited: 5)
16. V. Vatutin, “Macroscopic and microscopic sutructures of the family tree for a critical decomposable branching process”, Abstracts of the Intrenational Congress of Mathematicians (Seoul, Korea, August 13–21, 2014), Abstracts. Short Communications. Posters Sessions, Seoul ICM 2014, Organizing Committee, Seoul, Korea, 2014, 431
17. D. Denisov, V. Vatutin, V. Wachtel, “Local probabilities for random walks with negative drift conditioned to stay nonnegative”, Electronic Journal of Probability, 19 (2014), 88 , 17 pp.  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
18. V. Bansaye, V. Vatutin, “Random walk with heavy tail and negative drift conditioned by its minimum and final values”, Markov Processes and Related Fields, 20:4 (2014), 633–652 , arXiv: 1312.3306  mathnet  isi (cited: 1)  elib  scopus (cited: 1)
19. V. A. Vatutin, “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I. Konechnomernye raspredeleniya”, TVP, 59:4 (2014), 667–692  mathnet (cited: 4)  crossref  elib (cited: 1); V. A. Vatutin, “The structure of decomposable reduced branching processes. I. Finitedimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662  crossref  isi (cited: 3)  elib (cited: 2)  scopus (cited: 2)
20. Vladimir Vatutin, Macroscopic and microscopic structures of the family tree for the decomposable critical branching processes, 2014 , 37 pp., arXiv: 1402.6819v1

   2013
21. S. Sagitov, B. Mehlig B. P. Jagers, V. Vatutin, “Evolutionary branching in a stochastic population model with discrete mutational steps”, Theoretical Population Biology, 83 (2013), 145–154  mathnet  crossref  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
22. V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Proc. Steklov Inst. Math., 282 (2013), 243–272  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)
23. V. A. Vatutin, E. E. D'yakonova, S. Sagitov, “Evolution of Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)
24. V. A. Vatutin, V. A. Topchii, “Osnovnaya teorema vosstanovleniya dlya raspredelenii s tyazhelymi khvostami, imeyuschimi indeks $\beta\in(0,0.5]$”, TVP, 58:2 (2013), 387–396  mathnet (cited: 3)  crossref  zmath  elib (cited: 1); V. A. Vatutin, V. A. Topchii, “A Key Renewal Theorem for Heavy Tail Distributions with $\beta\in(0,0.5]$”, Theory Probab. Appl., 58:2 (2014), 333–342  crossref  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 3)
25. A. Iksanov, A. Marynych, V. Vatutin, Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve, 2013 , 26 pp., arXiv: 1304.4469
26. V. Vatutin, E. E. Dyakonova, P. Jagers, S. Sagitov, “Decomposable branching processes in a Markovian random environment”, Abstracts of communications of the Russian-Chinese Seminar on the asymptotic methods in probability theory and mathematical statistics (St. Petersburg, 10–14 June, 2013), St. Petersburg State University, St. Petersburg, 2013, 36
27. Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environments”, Proceedings 59-th ISI World Statistics Congress, 25–30 August 2013, Hong Kong (Hong Kong, 25–30 August 2013), International Statistical Institute, The Hague, The Netherlands, 2013, 1744-1749 http://2013.isiproceedings.org/Files/STS033-P3-S.pdf

   2012
28. V. A. Vatutin, “Total Population Size in Critical Branching Processes in a Random Environment”, Math. Notes, 91:1 (2012), 12–21  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)
29. V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732  mathnet  crossref  mathscinet (cited: 16)  zmath  isi (cited: 13)  elib (cited: 11)  scopus (cited: 14)
30. V. Vatutin, X Zheng, “Subcritical branching processes in a random environment without the Cramer condition”, Stochastic Process. Appl., 122:7 (2012), 2594-2609  mathnet  crossref  mathscinet (cited: 3)  zmath  isi (cited: 4)  elib (cited: 1)  scopus (cited: 4)
31. V. A. Vatutin, K. Liu, “Kriticheskie vetvyaschiesya protsessy s dvumya tipami chastits, evolyutsioniruyuschie v asinkhronnykh sluchainykh sredakh”, TVP, 57:2 (2012), 225–256  mathnet (cited: 1)  crossref  zmath  elib; V. A. Vatutin, Q. Liu, “Critical branching process with two types of particles evolving in asynchronous random environments”, Theory Probab. Appl., 57:2 (2013), 279–305  crossref  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
32. V. Vatutin, V. Wachtel, “Gnedenko-Stone local limit theorems for random walks conditioned to stay positive”, Modern stochastics: Theory and Applications III (Kyiv, Ukraine, September 10–14, 2012), Conference materials, Kievskii universitet, Kiev, 2012, 45 http://probability.univ.kiev.ua/msta3conf/datas/users/msta_main.pdf
33. Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environment”, 8-the World Congress in Probability and Statistics (Istanbul, Turkey, July 09–14, 2012), Programm and Abstracts, Bernoulli Society, 2012, 182–183 http://www.worldcong2012.org/ContributedTalks.pdf
34. V. A. Vatutin, V. A. Topchii, “Dvukhtipnye protsessy Bellmana-Kharrisa, startuyuschie s bolshogo chisla chastits”, Mezhdunarodnaya konferentsiya «Teoriya veroyatnostei i ee prilozheniya» (Moskva, 26–30 iyunya 2012 g.), Tezisy dokladov, eds. A. N. Shiryaev, A. V. Lebedev, LENAND, Moskva, 2012, 24–25
35. V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 , 24 pp.  mathnet  crossref  crossref  mathscinet (cited: 2)  zmath  scopus (cited: 4)

   2011
36. V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Advances in Mathematics, 21:1 (2011), 42–72  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
37. V. A. Vatutin, V. A. Topchii, Yu. Khu, “Vetvyascheesya sluchainoe bluzhdanie po reshetke $\mathbf Z^4$ s vetvleniem lish v nachale koordinat”, TVP, 56:2 (2011), 224–247  mathnet (cited: 1)  crossref  mathscinet (cited: 3)  elib (cited: 2); Y. Hu, V. A. Topchii, V. A. Vatutin, “Branching Random Walk in $\mathbf Z^4$ with Branching at the Origin Only”, Theory Probab. Appl., 56:2 (2012), 193–212  crossref  mathscinet  isi  elib  scopus
38. F. C. Klebaner, S. Sagitov, V. A. Vatutin, P. Haccou, P. Jagers, “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5:2 (2011), 147–162  crossref  mathscinet (cited: 5)  elib (cited: 9)  scopus (cited: 11)
39. V. A. Vatutin, V. A. Topchii, “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbb Z^d$ s vetvleniem v nule”, Matem. tr., 14:2 (2011), 28–72  mathnet (cited: 9)  mathnet (cited: 9)  mathscinet (cited: 7)  elib (cited: 5); V. A. Vatutin, V. A. Topchiǐ, “Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin”, Siberian Adv. Math., 23:2 (2013), 125–153  crossref  mathscinet  scopus (cited: 3)

   2010
40. V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177  mathnet  crossref  crossref  mathscinet  elib  scopus (cited: 2)
41. V. A. Vatutin, “Sistemy pollinga i mnogotipnye vetvyaschiesya protsessy v sluchainoi srede s finalnym produktom”, TVP, 55:4 (2010), 644–679  mathnet (cited: 2)  crossref  mathscinet (cited: 1)  elib (cited: 1); V. A. Vatutin, “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 2)
42. C. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350  mathscinet (cited: 8)
43. S. Sagitov, P. Jagers, V. Vatutin, “Coalescent approximation for structured populations in a stationary random environment.”, Theoretical Population Biology, 78:3 (2010), 192–199  crossref  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)
44. V. Vatutin, “A refinement of limit theorems for the critical branching processes in random environment”, Workshop on Branching Processes and their Applications, Lect. Notes Stat. Proc., 197, Part 1, Springer, Berlin, 2010, 3–19  crossref  mathscinet (cited: 1)

   2009
45. V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217  crossref  mathscinet (cited: 25)  zmath  isi (cited: 28)  elib (cited: 27)  scopus (cited: 28)
46. V. A. Vatutin, “Sudden death versus slow extinction for branching processes in random environment”, Proceedings of the 33th SPA conference, Berlin, 2009, 43
47. V. A. Vatutin, Branching Bellman-Harris processes, Lekts. Kursy NOC, 12, Steklov Math. Inst., RAS, Moscow, 2009 , 112 pp.  mathnet  mathnet  crossref  crossref  zmath  elib
48. V. A. Vatutin, V. I. Vakhtel, “Vnezapnoe vyrozhdenie kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, TVP, 54:3 (2009), 417–438  mathnet (cited: 8)  crossref  mathscinet (cited: 5)  elib (cited: 4); V. A. Vatutin, V. I. Vakhtel', “Sudden extinction of the critical branching process in random environment”, Theory Probab. Appl., 54:3 (2010), 466–484  crossref  mathscinet (cited: 3)  isi (cited: 5)  elib (cited: 4)  scopus (cited: 4)

   2008
49. V. A. Vatutin, A. E. Kyprianou, “Branching processes in random environment die slowly”, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 375–395  mathscinet (cited: 4)
50. V. A. Vatutin, Branching process and their application, Lekts. Kursy NOC, 8, Steklov Math. Inst., RAS, Moscow, 2008 , 108 pp.  mathnet  mathnet  crossref  crossref  zmath  elib
51. V. A. Vatutin, E. E. Dyakonova, “Volny v redutsirovannykh vetvyaschikhsya protsessakh v sluchainoi srede”, TVP, 53:4 (2008), 665–683  mathnet (cited: 3)  crossref  mathscinet (cited: 1)  zmath  elib (cited: 1); V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus

   2007
52. P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., Cambridge Univ. Press, Cambridge, 2007 , xii+316 pp.  mathscinet (cited: 85)
53. V. Vatutin, J. Xiong, “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 997–1012  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 8)  scopus (cited: 7)
54. V. A. Vatutin, V. I. Vakhtel, K. Flyaishmann, “Kriticheskie protsessy Galtona–Vatsona: Maksimum obschego chisla chastits vnutri bolshogo okna”, TVP, 52:3 (2007), 419–445  mathnet (cited: 6)  crossref  mathscinet (cited: 7)  elib; V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492  crossref  mathscinet  isi (cited: 5)  elib (cited: 4)  scopus (cited: 4)
55. V. A. Vatutin, E. E. Dyakonova, “Predelnye teoremy dlya redutsirovannykh vetvyaschikhsya protsessov v sluchainoi srede”, TVP, 52:2 (2007), 271–300  mathnet (cited: 6)  crossref  mathscinet (cited: 5)  zmath  elib (cited: 2); V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 3)  scopus (cited: 3)

   2006
56. K. A. Borovkov, V. A. Vatutin, “On the asymptotic behaviour of random recursive trees in random environments”, Adv. in Appl. Probab., 38:4 (2006), 1047–1070  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)
57. V. A. Vatutin, E. E. Dyakonova, “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, TVP, 51:1 (2006), 22–46  mathnet (cited: 21)  crossref  mathscinet (cited: 11)  zmath  elib (cited: 8); V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210  crossref  mathscinet  zmath  isi (cited: 12)  elib (cited: 11)  scopus (cited: 12)

   2005
58. K. Fleischmann, V. A. Vatutin, “Multi-scale clustering for a non-Markovian spatial branching process”, J. Theoret. Probab., 18:4 (2005), 719–755  crossref  mathscinet  zmath  isi  elib  scopus
59. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676  crossref  mathscinet (cited: 23)  zmath  isi (cited: 25)  elib (cited: 25)  scopus (cited: 25)
60. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673  crossref  mathscinet (cited: 51)  zmath  isi (cited: 55)  elib (cited: 55)  scopus (cited: 58)

   2004
61. V. Topchii, V. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 387–395  mathscinet (cited: 4)  zmath
62. V. Vatutin, E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 375–385  mathscinet (cited: 5)  zmath
63. E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306  mathscinet (cited: 6)  zmath
64. V. A. Vatutin, V. A. Topchii, “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 49:3 (2004), 461–484  mathnet (cited: 16)  crossref  mathscinet (cited: 8)  zmath; V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 4)  scopus (cited: 6)
65. V. A. Vatutin, E. E. Dyakonova, “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: Konechnomernye raspredeleniya”, TVP, 49:2 (2004), 231–268  mathnet (cited: 19)  crossref  mathscinet (cited: 12)  zmath; V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309  crossref  mathscinet  zmath  isi (cited: 12)  elib (cited: 11)  scopus (cited: 13)

   2003
66. V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Teor. \u Imovīr. Mat. Stat., 2003, no. 69, 1–15  mathscinet (cited: 16)  zmath; V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 (2005)  mathscinet
67. V. Topchii, V. Vatutin, “Individuals at the origin in the critical catalytic branching random walk”, Discrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 325–332  mathscinet (cited: 10)
68. J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 39:4 (2003), 593–620  crossref  mathscinet (cited: 26)  zmath  adsnasa  isi (cited: 26)  elib (cited: 25)  scopus (cited: 27)
69. V. A. Vatutin, “Predelnaya teorema dlya promezhutochno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, TVP, 48:3 (2003), 453–465  mathnet (cited: 11)  crossref  mathscinet (cited: 10)  zmath; V. A. Vatutin, “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 481–492  crossref  mathscinet  zmath  isi (cited: 11)  elib (cited: 5)  scopus (cited: 6)
70. V. A. Vatutin, E. E. Dyakonova, “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, TVP, 48:2 (2003), 274–300  mathnet (cited: 21)  crossref  mathscinet (cited: 13)  zmath; V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336  crossref  mathscinet  zmath  isi (cited: 13)  elib (cited: 14)  scopus (cited: 16)
71. P. Haccou, and V. Vatutin, “Establishment success and extinction risk in autocorrelated environments”, Theoretical Population Biology, 64:3 (2003), 303–314  crossref  zmath  isi (cited: 22)  elib (cited: 21)  scopus (cited: 22)

   2002
72. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes and some queueing systems”, J. Math. Sci. (New York), 111:6 (2002), 3901–3911  crossref  mathscinet (cited: 3)  zmath  elib (cited: 7)  scopus (cited: 7)
73. V. Vatutin, E. Dyakonova, “Reduced branching processes in random environment”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 455–467  mathscinet (cited: 6)  zmath
74. U. Rösler, V. Topchii, V. Vatutin, “Convergence rate for stable weighted branching processes”, Mathematics and computer science (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 441–453  mathscinet (cited: 5)
75. V. A. Vatutin, U. Rösler, V. A. Topchii, “The Rate of Convergence for Weighted Branching Processes”, Siberian Adv. Math., 12:4 (2002), 57–82  mathnet  mathscinet (cited: 2)  mathscinet (cited: 2)  zmath  elib
76. A. Vakolbinger, V. A. Vatutin, K. Flyaishmann, “Vetvyaschiesya sistemy s dolgo zhivuschimi chastitsami v kriticheskoi razmernosti”, TVP, 47:3 (2002), 417–451  mathnet (cited: 5)  crossref  mathscinet (cited: 5)  zmath; A. Wakolbinger, V. A. Vatutin, K. Fleischmann, “Branching systems with long-living particles at the critical dimension”, Theory Probab. Appl., 47:3 (2003), 429–454  crossref  mathscinet  zmath  isi (cited: 4)  elib (cited: 2)  scopus (cited: 4)
77. V. A. Vatutin, “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, TVP, 47:1 (2002), 21–38  mathnet (cited: 9)  crossref  mathscinet (cited: 9)  zmath; V. A. Vatutin, “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 4)  scopus (cited: 5)

   2001
78. V. A. Vatutin, E. E. Dyakonova, “The survival probability of a critical multitype Galton-Watson branching process”, J. Math. Sci. (New York), 106:1 (2001), 2752–2759  crossref  mathscinet (cited: 2)  zmath  elib (cited: 2)  scopus (cited: 2)
79. U. Rösler, V. A. Topchii, V. A. Vatutin, “High-level overshoot for a class of random sequences”, Siberian Adv. Math., 11:3 (2001), 60–72  mathscinet

   2000
80. V. A. Vatutin, “Linear functionals for critical multitype Galton-Watson branching processes”, J. Math. Sci. (New York), 99:4 (2000), 1502–1509  crossref  mathscinet (cited: 1)  zmath  elib (cited: 1)  scopus (cited: 1)
81. K. Fleischmann, V. Vatutin A., “An integral test for a critical multitype spatially homogeneous branching particle process and a related reaction-diffusion system”, Probab. Theory Related Fields, 116:4 (2000), 545–572  crossref  mathscinet (cited: 1)  zmath  isi (cited: 2)  elib (cited: 2)  scopus (cited: 2)
82. U. Rösler, V. A. Topchii, V. A. Vatutin, “Convergence conditions for weighted branching processes”, Discrete Math. Appl., 10:1 (2000), 5–21  mathnet  crossref  mathscinet  zmath  elib (cited: 3)  scopus (cited: 6)
83. V. A. Vatutin, K. Flyaishmann, “Otkloneniya ot tipichnykh proportsii v mnogotipnykh kriticheskikh vetvyaschikhsya protsessakh Galtona–Vatsona”, TVP, 45:1 (2000), 30–51  mathnet (cited: 2)  crossref  mathscinet (cited: 1)  zmath; V. A. Vatutin, K. Fleischmann, “Deviations from typical type proportions in critical multitype Galton–Watson processes”, Theory Probab. Appl., 45:1 (2001), 23–40  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
84. V. A. Vatutin, “On the embeddability probability of a random hypergraph with coloured edges into a bipartite graph”, Tr. Diskr. Mat., 3, Fizmatlit, Moscow, 2000, 29–36  mathnet

   1999
85. K. Fleischmann, V. Vatutin A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. in Appl. Probab., 31:1 (1999), 88–111  crossref  mathscinet (cited: 10)  zmath  isi (cited: 14)  elib (cited: 15)  scopus (cited: 13)

   1998
86. A. Vakolbinger, V. A. Vatutin, “Vetvyaschiesya protsessy v prostranstve s dolgo zhivuschimi chastitsami”, TVP, 43:4 (1998), 655–671  mathnet (cited: 5)  crossref  mathscinet (cited: 5)  zmath; A. Wakolbinger, V. A. Vatutin, “Spatial branching populations with long individual lifetimes”, Theory Probab. Appl., 43:4 (1999), 620–632  crossref  mathscinet  zmath  isi (cited: 6)

   1997
87. M. Drmota, V. Vatutin, “Limiting distributions in branching processes with two types of particles”, Classical and modern branching processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, 89–110  crossref  mathscinet (cited: 2)  zmath
88. K. A. Borovkov, V. A. Vatutin, “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240  crossref  mathscinet (cited: 4)  zmath  isi (cited: 9)  elib (cited: 9)  scopus (cited: 8)
89. V. A. Vatutin, E. E. D'yakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496  mathnet  crossref  mathscinet  zmath  scopus (cited: 4)
90. V. A. Vatutin, V. A. Topchii, “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, TVP, 42:1 (1997), 21–34  mathnet (cited: 15)  crossref  mathscinet (cited: 10)  zmath; V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab. Appl., 42:1 (1998), 17–27  crossref  mathscinet  zmath  isi (cited: 5)

   1996
91. K. A. Borovkov, V. A. Vatutin, “On distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622  crossref  mathscinet (cited: 10)  zmath  isi (cited: 16)  elib (cited: 19)  scopus (cited: 16)
92. V. A. Vatutin, V. G. Mikhailov, “On the number of readings of random nonequiprobable files under stable sorting”, Discrete Math. Appl., 6:3 (1996), 207–223  mathnet  crossref  mathscinet  zmath  scopus
93. V. A. Vatutin, “The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent”, Discrete Math. Appl., 6:1 (1996), 41–52  mathnet  crossref  mathscinet  zmath  scopus
94. V. A. Vatutin, V. G. Mikhailov, “Asimptoticheskie svoistva matrits, svyazannykh s otobrazheniyami razbienii”, TVP, 41:2 (1996), 241–250  mathnet  crossref  mathscinet  zmath; V. A. Vatutin, V. G. Mikhailov, “Asymptotic properties of matrices related to mappings of partitions”, Theory Probab. Appl., 41:2 (1997), 318–325  crossref  mathscinet  zmath  isi  scopus

   1995
95. V. A. Vatutin, “On the explosiveness of nonhomogeneous age-dependent branching processes”, Teor. \u Imovīr. Mat. Stat., 1995, no. 52, 37–40  mathscinet (cited: 2)  zmath; V. A. Vatutin, “On the explosiveness of nonhomogeneous age-dependent branching processes”, Theory Probab. Math. Statist., 1996, no. 52, 39–42  mathscinet
96. V. A. Vatutin, V. G. Mikhailov, “Some estimates for the distribution of the height of a tree for digital searching”, Discrete Math. Appl., 5:4 (1995), 289–300  mathnet  mathscinet  zmath  scopus
97. V. G. Mikhailov, V. A. Vatutin, “Statistical estimation of the entropy of discrete random variables with a large number of outcomes”, Russian Math. Surveys, 50:5 (1995), 963–976  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)
98. V. A. Vatutin, “On the maximum of a simple random walk”, Theory Probab. Appl., 40:2 (1995), 398–402  mathnet  crossref  mathscinet  zmath  isi

   1994
99. V. A. Vatutin, “On the height of the trunk of random rooted trees”, Discrete Math. Appl., 4:4 (1994), 351–360  mathnet  mathscinet  zmath  scopus (cited: 1)
100. V. A. Vatutin, “Limit theorems for the number of ascending segments in random permutations generated by sorting algorithms”, Discrete Math. Appl., 4:1 (1994), 31–44  mathnet  mathscinet  zmath  scopus (cited: 2)
101. V. A. Vatutin, “Branching processes with final types of particles and random trees”, Theory Probab. Appl., 39:4 (1994), 628–641  mathnet  crossref  mathscinet  zmath  isi

   1993
102. V. A. Vatutin, “The total number of particles in a reduced Bellman–Harris branching process”, Theory Probab. Appl., 38:3 (1993), 567–571  mathnet  crossref  mathscinet  zmath  isi
103. V. A. Vatutin, “The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height”, Theory Probab. Appl., 38:2 (1993), 330–341  mathnet  crossref  mathscinet  zmath  isi
104. V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485  crossref  mathscinet (cited: 11)  zmath  scopus (cited: 25)

   1991
105. V. A. Vatutin, “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s finalnymi tipami”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. st. Posvyaschaetsya 100-letiyu so dnya rozhdeniya Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 75–83  mathnet  mathscinet  zmath; V. A. Vatutin, “The limit theorem for Bellman–Harris process with final types”, Proc. Steklov Inst. Math., 200 (1993), 83–92  mathscinet  zmath
106. V. A. Vatutin, S. M. Sagitov, “A critical branching process: the remote past given a favorable present”, Theory Probab. Appl., 36:1 (1991), 86–98  mathnet  crossref  mathscinet  zmath  isi

   1989
107. V. A. Vatutin, N. M. Yanev, “Mnogomernyi kriticheskii vetvyaschiisya protsess Galtona–Vatsona s finalnymi tipami”, Diskret. matem., 1:4 (1989), 113–122  mathnet  mathscinet  zmath; V. A. Vatutin, N. M. Yanev, “A multidimensional critical Galton–Watson branching process with final types”, Discrete Math. Appl., 1:3 (1991), 321–333  mathscinet  zmath
108. V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Tupes. II”, Theory Probab. Appl., 34:2 (1989), 216–227  mathnet  crossref  mathscinet  zmath  isi

   1988
109. V. A. Vatutin, S. M. Sagitov, “Critical decomposable Bellman–Harris processes with two types of particles”, Math. Notes, 43:2 (1988), 157–161  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
110. V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Types. I”, Theory Probab. Appl., 33:3 (1988), 460–472  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1987
111. V. A. Vatutin, “Asimptoticheskie svoistva kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa, nachinayuschikhsya s bolshogo chisla chastits”, Problemy ustoichivosti stokhasticheskikh modelei, Tr. seminara, VNIISI, M., 1987, 8–15; V. A. Vatutin, “Asymptotic properties of Bellman–Harris critical branching processes starting with a large number of particles”, Stability problems for stochastic models, J. Soviet Math., 47:5 (1989), 2673–2681  crossref  mathscinet  scopus

   1986
112. N. M. Yanev, V. A. Vatutin, K. V. Mitov, “Critical branching migration processes with an absorbing barrier at zero”, Mathematics and mathematical education (Sl'nchev Bryag, 1986), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 511–517  mathscinet
113. V. A. Vatutin, S. M. Sagitov, “A decomposable critical Bellman-Harris branching process with two types of particles”, Dokl. AN SSSR, 291:5 (1986), 1040–1043  mathnet  mathscinet
114. V. A. Vatutin, “Critical Bellman–Harris branching processes starting with a large number of particles”, Math. Notes, 40:4 (1986), 803–811  mathnet  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 3)
115. V. A. Vatutin, S. M. Sagitov, “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Veroyatnostnye zadachi diskretnoi matematiki, Sbornik rabot, Tr. MIAN SSSR, 177, 1986, 3–20  mathnet (cited: 7)  mathscinet (cited: 2)  zmath; V. A. Vatutin, S. M. Sagitov, “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177 (1988), 1–19  mathscinet  zmath
116. V. A. Vatutin, “Kriticheskii vetvyaschiisya protsess Bellmana–Kharrisa s finalnym tipom”, TVP, 31:3 (1986), 491–502  mathnet  mathscinet  zmath; V. A. Vatutin, “Critical branching Bellman–Harris process of final type”, Theory Probab. Appl., 31:3 (1987), 428–438  crossref  mathscinet  zmath  isi
117. V. A. Vatutin, “Dostatochnye usloviya regulyarnosti vetvyaschikhsya protsessov Bellmana–Kharrisa”, TVP, 31:1 (1986), 59–66  mathnet (cited: 1)  mathscinet (cited: 1)  zmath; V. A. Vatutin, “Sufficient regularity conditions for Bellman–Harris branching processes”, Theory Probab. Appl., 31:1 (1987), 50–57  crossref  mathscinet  zmath  isi (cited: 1)

   1985
118. V. A. Vatutin, A. M. Zubkov, “Vetvyaschiesya protsessy. I”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 23, VINITI, M., 1985, 3–67  mathnet (cited: 6)  mathscinet (cited: 3)  zmath; V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475  crossref  mathscinet  zmath  scopus (cited: 5)

   1984
119. K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Critical Galton–Watson processes with decreasing immigration depending on the state of the process”, Serdica, 10:4 (1984), 412–424  mathscinet  zmath
120. K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Continuous-time branching processes with decreasing state-dependent immigration”, Adv. in Appl. Probab., 16:4 (1984), 697–714  crossref  mathscinet (cited: 2)  zmath  isi (cited: 6)

   1983
121. V. A. Vatutin, “Branching processes with infinite variance”, Fourth international summer school on probability theory and mathematical statistics (Varna, 1982), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 9–38  mathscinet (cited: 1)  zmath

   1982
122. V. A. Vatutin, V. G. Mikhailov, “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, TVP, 27:4 (1982), 684–692  mathnet (cited: 6)  mathscinet (cited: 16)  zmath; V. A. Vatutin, V. G. Mihaǐlov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743  crossref  mathscinet  zmath  isi (cited: 2)

   1981
123. V. A. Vatutin, “Lokalnaya predelnaya teorema dlya kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego k ego devyanostoletiyu, Tr. MIAN SSSR, 158, 1981, 9–30  mathnet (cited: 2)  mathscinet (cited: 1)  zmath; V. A. Vatutin, “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158 (1983), 9–31  mathscinet  zmath
124. V. A. Vatutin, “Ob odnom klasse predelnykh teorem dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa”, TVP, 26:4 (1981), 818–824  mathnet  mathscinet  zmath; V. A. Vatutin, “On a class of limit theorems for a critical Bellman–Harris branching process”, Theory Probab. Appl., 26:4 (1982), 806–812  crossref  mathscinet  zmath  isi

   1980
125. V. A. Vatutin, “Ob odnom klasse kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa s neskolkimi tipami chastits”, TVP, 25:4 (1980), 771–781  mathnet (cited: 4)  mathscinet (cited: 2)  zmath; V. A. Vatutin, “On a class of the critical multitype Bellman–Harris branching processes”, Theory Probab. Appl., 25:4 (1981), 760–771  crossref  mathscinet  zmath  isi (cited: 3)

   1979
126. V. A. Vatutin, “Distance to the nearest common ancestor in bellman-harris branching processes”, Math. Notes, 25:5 (1979), 378–382  mathnet  crossref  mathscinet  zmath  elib (cited: 5)  scopus (cited: 5)
127. V. A. Vatutin, “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa”, Matem. sb., 109(151):3(7) (1979), 440–452  mathnet (cited: 10)  mathscinet  zmath; V. A. Vatutin, “A new limit theorem for the critical Bellman–Harris branching process”, Math. USSR-Sb., 37:3 (1980), 411–423  crossref  mathscinet  zmath  isi (cited: 2)
128. V. A. Vatutin, “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, TVP, 24:3 (1979), 503–514  mathnet (cited: 9)  mathscinet (cited: 7)  zmath; V. A. Vatutin, “Discrete limit distributions of the number of particles in a multitype age-dependent branching processes”, Theory Probab. Appl., 24:3 (1980), 509–520  crossref  mathscinet  zmath  isi (cited: 9)

   1978
129. V. A. Vatutin, “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, TVP, 23:4 (1978), 807–818  mathnet (cited: 4)  mathscinet (cited: 4)  zmath; V. A. Vatutin, “Limit theorem for a critical multitype Bellman–Harris branching process with infinite second moments”, Theory Probab. Appl., 23:4 (1979), 776–788  crossref  mathscinet  zmath  isi (cited: 5)

   1977
130. V. A. Vatutin, “A conditional limit theorem for a critical Branching process with immigration”, Math. Notes, 21:5 (1977), 405–411  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 4)
131. V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225  mathnet  crossref  mathscinet  zmath  isi (cited: 8)
132. V. A. Vatutin, “Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles”, Math. USSR-Sb., 31:1 (1977), 95–107  mathnet  crossref  mathscinet  zmath  isi
133. V. A. Vatutin, “Kriticheskii vetvyaschiisya protsess Galtona–Vatsona s emigratsiei”, TVP, 22:3 (1977), 482–497  mathnet (cited: 5)  mathscinet (cited: 6)  zmath; V. A. Vatutin, “A critical Galton–Watson branching process with emigration”, Theory Probab. Appl., 22:3 (1978), 465–481  crossref  mathscinet  zmath
134. V. A. Vatutin, “Discrete distributions of the number of particles in critical Bellman–Harris branching processes”, Theory Probab. Appl., 22:1 (1977), 146–152  mathnet  crossref  mathscinet  zmath
135. V. A. Vatutin, “Asymptotic behaviour of the non-extinction probability for a critical branching process”, Theory Probab. Appl., 22:1 (1977), 140–146  mathnet  crossref  mathscinet  zmath

   1976
136. V. A. Vatutin, “Uslovie regulyarnosti vetvyaschegosya protsessa Bellmana–Kharrisa”, Dokl. AN SSSR, 230:1 (1976), 15–18  mathscinet (cited: 1)  zmath
137. V. A. Vatutin, “Predelnye teoremy dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s beskonechnoi dispersiei”, TVP, 21:4 (1976), 861–863  mathnet (cited: 3)  mathscinet  zmath; V. A. Vatutin, “A limit theorem for a critical age-dependent branching process with infinite variance”, Theory Probab. Appl., 21:4 (1977), 839–842  crossref  mathscinet  zmath
138. V. A. Vatutin, “Kriticheskii vetvyaschiisya protsess Bellmana–Kharrisa s immigratsiei i neskolkimi tipami chastits”, TVP, 21:2 (1976), 447–454  mathnet  mathscinet (cited: 1)  zmath; V. A. Vatutin, “Critical multitype age-dependent branching process with immigration”, Theory Probab. Appl., 21:2 (1977), 435–442  crossref  mathscinet  zmath

   1974
139. V. A. Vatutin, “The asymptotic probability of the first degeneration for branching processes with immigration”, Theory Probab. Appl., 19:1 (1974), 25–34  mathnet  crossref  mathscinet  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2017