Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | Zentralblatt MATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Volkov Evgenii Alekseevich
(full list of publications)
| by years | scientific publications | by types |



   2016
1. E. A. Volkov, A. A. Dosiyev, “On the numerical solution of a multilevel nonlocal problem”, Mediterr. J. Math., 13:5 (2016), 3589–3604  mathnet  crossref  mathscinet  zmath  isi  elib  scopus (cited: 1)

   2013
2. E. A. Volkov, “Approximate grid solution of a nonlocal boundary value problem for Laplaces equation on a rectangle”, Comput. Math. Math. Phys., 53:8 (2013), 1128–1138  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)
3. E. A. Volkov, “Solvability analysis of a nonlocal boundary value problem by applying the contraction mapping principle”, Comput. Math. Math. Phys., 53:10 (2013), 1494–1498  mathnet  crossref  crossref  mathscinet  isi (cited: 1)  elib  elib  scopus (cited: 1)
4. E. A. Volkov, A. A. Dosiyev, S. C. Buranay, “On the solution of a nonlocal problem”, Comput. Math. Appl., 66:3 (2013), 330–338  mathnet  crossref  mathscinet (cited: 4)  zmath  isi (cited: 7)  elib (cited: 5)  scopus (cited: 11)

   2012
5. E. A. Volkov, A. A. Dosiyev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Comput. Math. Math. Phys., 52:6 (2012), 879–886  mathnet  crossref  mathscinet  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
6. E. A. Volkov, “About a local grid method of a solution of Laplaces equation in the infinite rectangular cylinder”, Comput. Math. Math. Phys., 52:1 (2012), 90–97  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2010
7. E. A. Volkov, “On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions”, Proc. Steklov Inst. Math., 269 (2010), 57–64  mathnet  crossref  mathscinet  zmath  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
8. E. A. Volkov, “A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 50:2 (2010), 274–284  mathnet  crossref  mathscinet  adsnasa  isi (cited: 2)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
9. E. A. Volkov, “Application of a 14-point averaging operator in the grid method”, Comput. Math. Math. Phys., 50:12 (2010), 2023–2032  mathnet  crossref  adsnasa  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)

   2009
10. E. A. Volkov, “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 49:3 (2009), 496–501  mathnet  crossref  mathscinet  isi (cited: 3)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 4)

   2007
11. E. A. Volkov, “On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped”, Comput. Math. Math. Phys., 47:4 (2007), 638–643  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
12. E. A. Volkov, A. A. Dosiyev, “A high accurate composite grid method for solving Laplace's boundary value problems with singularities”, Russian J. Numer. Anal. Math. Modelling, 22:3 (2007), 291–307  crossref  mathscinet (cited: 3)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 5)

   2006
13. E. A. Volkov, “Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon”, Proc. Steklov Inst. Math., 255 (2006), 92–107  mathnet  crossref  mathscinet  elib (cited: 3)  scopus (cited: 3)

   2005
14. E. A. Volkov, “On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped”, Comput. Math. Math. Phys., 45:9 (2005), 1531–1537  mathnet  mathscinet  zmath  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
15. E. A. Volkov, “A Block Method for Solving the Laplace Equation in a Disk with a Hole That Has Cuts”, Proc. Steklov Inst. Math., 248 (2005), 81–88  mathnet  mathscinet  zmath

   2004
16. E. A. Volkov, A. A. Dosiev, M. Bozer, “A high-accuracy composite grid method”, Dokl. Math., 69:3 (2004), 391–393  mathnet  mathscinet  zmath  isi (cited: 1)
17. E. A. Volkov, “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Russian J. Numer. Anal. Math. Modelling, 19:3 (2004), 269–278  crossref  mathscinet (cited: 2)  zmath  isi (cited: 5)  elib (cited: 7)  scopus (cited: 7)

   2003
18. E. A. Volkov, A. K. Kornoukhov, “On solving the Motz problem by a block method”, Comput. Math. Math. Phys., 43:9 (2003), 1331–1337  mathnet  mathscinet  zmath  elib (cited: 3)  elib (cited: 3)  scopus (cited: 4)
19. E. A. Volkov, “A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base”, Proc. Steklov Inst. Math., 243 (2003), 131–153  mathnet  mathscinet  zmath

   2002
20. E. A. Volkov, A. K. Kornoukhov, “Solving the torsion problem for an $L$-section rod by the block method”, Comput. Math. Math. Phys., 42:8 (2002), 1161–1170  mathnet  mathscinet  zmath  elib (cited: 2)  scopus (cited: 2)
21. E. A. Volkov, “On upper and lower bounds of the error of the difference solution to the Dirichlet problem for the Laplace equation in a cylinder”, Russian J. Numer. Anal. Math. Modelling, 17:3 (2002), 305–317  crossref  mathscinet  zmath  isi  elib  scopus

   2001
22. E. A. Volkov, “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russian J. Numer. Anal. Math. Modelling, 16:6 (2001), 519–527  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 4)  scopus (cited: 4)
23. E. A. Volkov, “Cases when the solution of the Dirichlet problem for the Laplace equation on a polygon is a polynomial”, Dokl. Math., 63:1 (2001), 82–84  mathnet  mathscinet  zmath  isi  elib  scopus
24. E. A. Volkov, “On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon”, Proc. Steklov Inst. Math., 232 (2001), 96–108  mathnet  mathscinet  zmath  zmath

   2000
25. E. A. Volkov, “On the grid method for solving the Dirichlet problem for the Laplace equation in a cylinder with lateral surface of class $C_{1,1}$”, Russian J. Numer. Anal. Math. Modelling, 15:6 (2000), 521–538  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)

   1999
26. E. A. Volkov, A. K. Kornoukhov, “An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method”, Comput. Math. Math. Phys., 39:7 (1999), 1100–1108  mathnet  mathscinet  zmath  elib (cited: 3)  scopus (cited: 3)
27. E. A. Volkov, “Conditions representation of solutions of boundary value problems for the Laplace and Poisson equations on some triangles and a rectangle by algebraic polynomials”, Dokl. Math., 59:3 (1999), 464–466  mathnet  mathscinet  zmath  elib  scopus
28. E. A. Volkov, “On convergence in $C_2$ of a difference solution of the Laplace equation on a rectangle”, Russian J. Numer. Anal. Math. Modelling, 14:3 (1999), 291–298  crossref  mathscinet (cited: 2)  zmath  isi (cited: 5)  elib (cited: 5)  scopus (cited: 5)
29. E. A. Volkov, “On a property of solutions to the Poisson equation on polygons”, Math. Notes, 66:2 (1999), 139–141  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus
30. E. A. Volkov, “Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a Rectangle in Algebraic Polynomials”, Proc. Steklov Inst. Math., 227 (1999), 116–130  mathnet  mathscinet  zmath

   1998
31. E. A. Volkov, A. K. Kornoukhov, E. A. Yakovleva, “Experimental investigation of the block method for the Laplace equation on polygons”, Comput. Math. Math. Phys., 38:9 (1998), 1481–1489  mathnet  mathscinet  zmath

   1997
32. E. A. Volkov, “On the Use of the Block Method for an Approximate Conformal Mapping of a Polygon onto a Rectangle”, Proc. Steklov Inst. Math., 219 (1997), 108–117  mathnet  mathscinet  zmath
33. E. A. Volkov, “O priblizhennom konformnom otobrazhenii blochnym metodom dvusvyaznogo mnogougolnika na koltso”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 17, Sbornik statei, Tr. MIAN, 214, Nauka, M., 1997, 145–163  mathnet (cited: 1)  mathscinet  zmath; E. A. Volkov, “On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method”, Proc. Steklov Inst. Math., 214 (1996), 138–156  mathscinet  zmath
34. E. A. Volkov, “O reshenii bystrym blochnym metodom vidoizmenennoi zadachi Dirikhle na mnogosvyaznom mnogougolnike”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 17, Sbornik statei, Tr. MIAN, 214, Nauka, M., 1997, 135–144  mathnet (cited: 1)  mathscinet  zmath; E. A. Volkov, “On the solution of a modified Dirichlet problem on a multiconnected polygon by the rapid block method”, Proc. Steklov Inst. Math., 214 (1996), 128–137  mathscinet  zmath

   1995
35. E. A. Volkov, “A fast block method for solving the Laplace equation on polygons with nonlocal boundary conditions”, Dokl. Math., 51:3 (1995), 314–317  mathnet  mathscinet  zmath
36. E. A. Volkov, “The fast block method for solving the Laplace equation on polygons under piecewise constant boundary conditions”, Proc. Steklov Inst. Math., 210 (1995), 66–73  mathnet  mathscinet  zmath

   1994
37. E. A. Volkov, Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press, Boca Raton, FL, 1994 , x+227 pp.  mathscinet (cited: 11)  zmath
38. E. A. Volkov, “On solution of the Laplace equation by the block method on polygons under piecewise constant boundary conditions”, Russian Acad. Sci. Dokl. Math., 49:2 (1994), 375–379  mathnet  mathscinet  zmath

   1992
39. E. A. Volkov, “Rapid block method for constructing Green's function of Laplace's operator on polygons”, Differ. Equations, 28:7 (1992), 952–960  mathnet  mathscinet  zmath  isi
40. E. A. Volkov, “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri analiticheskikh smeshannykh kraevykh usloviyakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 15, Tr. MIAN, 201, Nauka, M., 1992, 165–185  mathnet (cited: 5)  mathscinet (cited: 1)  zmath; E. A. Volkov, “Approximate solution, by the block method, of the Laplace equation on polygons with analytic mixed boundary conditions”, Proc. Steklov Inst. Math., 201 (1994), 137–153  mathscinet  zmath
41. E. A. Volkov, “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri neanaliticheskikh granichnykh usloviyakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 14, Tr. MIAN SSSR, 194, Nauka, M., 1992, 63–88  mathnet (cited: 1)  mathscinet (cited: 4)  zmath; E. A. Volkov, “Approximate solution of Laplace's equation by the block method on polygons under nonanalytic boundary conditions”, Proc. Steklov Inst. Math., 194 (1993), 65–90  mathscinet  zmath

   1991
42. E. A. Volkov, “O bystrom metode vychisleniya funktsii Grina operatora Laplasa na mnogougolnikakh”, Dokl. AN SSSR, 321:6 (1991), 1143–1146  mathnet  mathscinet  zmath; E. A. Volkov, “On a fast method of computing the Green function of the Laplace operator on polygons”, Sov. Math. Dokl., 44:3 (1992), 854–857  mathscinet  zmath
43. E. A. Volkov, “Priblizhennoe konformnoe otobrazhenie blochnym metodom oblastei s periodicheskoi strukturoi”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. st. Posvyaschaetsya 100-letiyu so dnya rozhdeniya Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 100–113  mathnet (cited: 1)  mathscinet  zmath; E. A. Volkov, “Approximate conformal mapping of domains with periodical structure by the block method”, Proc. Steklov Inst. Math., 200 (1993), 111–124  mathscinet  zmath

   1990
44. E. A. Volkov, Métodos numéricos, Mir, Moscow, 1990 , 255 pp. (na ispanskom yazyke)  mathscinet (cited: 1)  zmath
45. E. A. Volkov, “Priblizhennoe konformnoe otobrazhenie blochnym metodom vneshnosti reshetki ellipsov na vneshnost reshetki plastin”, Differentsialnye uravneniya i funktsionalnye prostranstva, Sbornik statei. Posvyaschaetsya pamyati akademika Sergeya Lvovicha Soboleva, Tr. MIAN SSSR, 192, Nauka, M., 1990, 35–41  mathnet (cited: 1)  mathscinet  zmath; E. A. Volkov, “Approximate conformal mapping of the exterior of a lattice of ellipses onto the exterior of a lattice of segments by the block method”, Proc. Steklov Inst. Math., 192 (1992), 35–42  mathscinet  zmath

   1989
46. E. A. Volkov, “An approximate conformal mapping of the exterior of a parabola with a hole onto a ring”, Ukrainian Math. J., 41:4 (1989), 415–418  crossref  mathscinet  zmath  zmath  scopus
47. E. A. Volkov, “Razvitie blochnogo metoda resheniya uravneniya Laplasa dlya konechnykh i beskonechnykh krugovykh mnogougolnikov”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 13, Sbornik rabot, Tr. MIAN SSSR, 187, Nauka, M., 1989, 39–68  mathnet (cited: 6)  mathscinet (cited: 1)  zmath; E. A. Volkov, “Development of block method of solution of Laplace equation for finite and nonfinite circular polygones”, Proc. Steklov Inst. Math., 187 (1990), 45–78  mathscinet  zmath
48. E. A. Volkov, Numerical methods, Hemisphere Publ. Corp., New York, 1989 , 238 pp.

   1988
49. E. A. Volkov, “Approximate conformal mapping of a disk with a polygonal hole onto a ring by the block method”, U.S.S.R. Comput. Math. Math. Phys., 28:3 (1988), 143–147  mathnet  crossref  mathscinet  zmath  isi  scopus
50. E. A. Volkov, “Vysokotochnye prakticheskie rezultaty konformnykh otobrazhenii blochnym metodom odnosvyaznykh i dvusvyaznykh oblastei”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 12, Sbornik rabot, Tr. MIAN SSSR, 181, Nauka, M., 1988, 40–69  mathnet (cited: 6)  mathscinet  zmath; E. A. Volkov, “Highly-precision practical results in conformal mappings of simply connected and doubly connected domains by the block method”, Proc. Steklov Inst. Math., 181 (1989), 43–73  mathscinet  zmath

   1987
51. E. A. Volkov, “Approximate conformal mapping by a block method of a square frame onto an annulus”, Investigations in the theory of the approximation of functions, Akad. Nauk SSSR Bashkir. Filial, Otdel Fiz. Mat., Ufa, 1987, 85–96  mathscinet
52. E. A. Volkov, “Approximate conformal mapping of certain polygons onto a strip by the block method”, U.S.S.R. Comput. Math. Math. Phys., 27:4 (1987), 136–142  mathnet  crossref  mathscinet  zmath  isi  scopus
53. E. A. Volkov, “Razvitie metoda kvadratur dlya uravneniya Laplasa i konformnykh otobrazhenii”, Teoriya funktsii i smezhnye voprosy analiza, Trudy konferentsii po teorii funktsii, posvyaschennoi 80-letiyu akademika Sergeya Mikhailovicha NIKOLSKOGO (Dnepropetrovsk, 29 maya–1 iyunya 1985 g.), Tr. MIAN SSSR, 180, Nauka, M., 1987, 83–85  mathnet  zmath; E. A. Volkov, “A development of the method of quadratures for the Laplace equation and conformal mappings”, Proc. Steklov Inst. Math., 180 (1989), 94–96  zmath

   1986
54. E. A. Volkov, “Asimptoticheski bystryi priblizhennyi metod nakhozhdeniya na setochnykh otrezkakh resheniya raznostnogo uravneniya Laplasa”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 11, Sbornik rabot, Tr. MIAN SSSR, 173, 1986, 69–89  mathnet (cited: 6)  mathscinet (cited: 2)  zmath; E. A. Volkov, “An asymptotically fast approximate method of finding a solution of the difference Laplace equation on mesh segments”, Proc. Steklov Inst. Math., 173 (1987), 71–92  mathscinet  zmath
55. E. A. Volkov, “Priblizhennyi metod konformnogo otobrazheniya mnogosvyaznykh mnogougolnikov na kanonicheskie oblasti”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 11, Sbornik rabot, Tr. MIAN SSSR, 173, 1986, 55–68  mathnet (cited: 6)  mathscinet  zmath; E. A. Volkov, “An approximate method of conformal mapping of multiply connected polygons onto canonical domains”, Proc. Steklov Inst. Math., 173 (1987), 57–69  mathscinet  zmath

   1985
56. E. A. Volkov, “Eksponentsialno skhodyaschiisya metod dlya zadachi Neimana na mnogosvyaznykh mnogougolnikakh”, Issledovaniya po teorii funktsii mnogikh deistvitelnykh peremennykh i priblizheniyu funktsii, Sbornik statei. Posvyaschaetsya akademiku Sergeyu Mikhailovichu Nikolskomu k ego vosmidesyatiletiyu, Tr. MIAN SSSR, 172, 1985, 86–106  mathnet (cited: 5)  mathscinet  zmath; E. A. Volkov, “An exponentially converging method for the Neumann problem on multiply connected polygons”, Proc. Steklov Inst. Math., 172 (1987), 97–118  mathscinet  zmath
57. E. A. Volkov, “On methods of solving difference equations for a piecewise homogeneous medium, and with right side given along a curve”, Sov. Math. Dokl., 32 (1985), 63–66  mathnet  mathscinet  zmath

   1984
58. E. A. Volkov, “On an asymptotically fast approximate method of obtaining a solution of the Laplace difference equation on mesh segments”, Sov. Math. Dokl., 30 (1984), 642–646  mathnet  mathscinet  zmath
59. E. A. Volkov, “Ekonomichnyi metod sostavnykh setok dlya zadachi Dirikhle v kusochno-odnorodnoi srede”, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize (Moskva, 14–19 sentyabrya 1981 g.), Tr. MIAN SSSR, 163, 1984, 49–73  mathnet  mathscinet  zmath; E. A. Volkov, “An economical composite difference method for the Dirichlet problem in a piecewise-homogeneous medium”, Proc. Steklov Inst. Math., 163 (1985), 61–87  mathscinet  zmath

   1982
60. E. A. Volkov, Chislennye metody, Nauka, M., 1982 , 254 pp.; E. A. Volkov, Numerical methods, Mir, Moscow, 1986 , 238 pp.  mathscinet (cited: 1)

   1980
61. E. A. Volkov, “Effektivnyi metod kubicheskikh setok resheniya uravneniya Laplasa na parallelepipede pri razryvnykh granichnykh usloviyakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 8, Sbornik rabot, Tr. MIAN SSSR, 156, 1980, 30–46  mathnet (cited: 3)  mathscinet  zmath; E. A. Volkov, “An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions”, Proc. Steklov Inst. Math., 156 (1983), 31–49  mathscinet  zmath

   1979
62. E. A. Volkov, “An exponentially converging method of conformal mapping of polygonal regions”, Sov. Math. Dokl., 20 (1979), 1404–1407  mathscinet  zmath
63. E. A. Volkov, “On an efficient method of cubic meshes for solving Laplace's equation on a parallelepiped with discontinuous boundary conditions”, Sov. Math. Dokl., 20 (1979), 1142–1146  mathscinet  zmath
64. E. A. Volkov, “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109(151):3(7) (1979), 323–354  mathnet (cited: 19)  mathscinet (cited: 8)  zmath; E. A. Volkov, “An exponentially convergent method for the solution of Laplace's equation on polygons”, Math. USSR-Sb., 37:3 (1980), 295–325  crossref  mathscinet  zmath  isi (cited: 9)
65. E. A. Volkov, “O gladkosti reshenii zadachi Dirikhle i metode sostavnykh setok na mnogogrannikakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 7, Sbornik rabot, Tr. MIAN SSSR, 150, 1979, 67–98  mathnet (cited: 3)  mathscinet  zmath; E. A. Volkov, “On the smoothness of solutions of the Dirichlet problem, and the composite mesh method on polyhedra”, Proc. Steklov Inst. Math., 150 (1981), 71–103  mathscinet  zmath

   1978
66. E. A. Volkov, “On the solution of Laplace's equation on a parallelepiped with discontinuous boundary conditions by methods of uniform and composite grids”, Sov. Math. Dokl., 19 (1978), 451–454  mathscinet  zmath
67. E. A. Volkov, “A rapidly converging method of quadratures for solving Laplace's equation on polygons”, Sov. Math. Dokl., 19 (1978), 154–157  mathscinet  zmath

   1977
68. E. A. Volkov, “A difference-analytic method of calculating the potential field on polygons”, Sov. Math. Dokl., 18 (1977), 1531–1535 (1978)  mathscinet  zmath

   1976
69. E. A. Volkov, “O poiske reshenii nelineinogo integralnogo uravneniya”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego vosmidesyatipyatiletiyu, Tr. MIAN SSSR, 142, 1976, 101–121  mathnet (cited: 1)  mathscinet  zmath; E. A. Volkov, “On the search of solutions of a nonlinear integral equation”, Proc. Steklov Inst. Math., 142 (1979), 107–128  mathscinet  zmath
70. E. A. Volkov, “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 6, Sbornik rabot, Tr. MIAN SSSR, 140, 1976, 68–102  mathnet (cited: 13)  mathscinet (cited: 8)  zmath; E. A. Volkov, “The method of composite regular nets for the Laplace equation on polygons”, Proc. Steklov Inst. Math., 140 (1979), 71–109  mathscinet  zmath
71. E. A. Volkov, “Ob issledovanii i reshenii raznostnym metodom nelineinykh zadach dlya obyknovennogo differentsialnogo uravneniya”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 6, Sbornik rabot, Tr. MIAN SSSR, 140, 1976, 103–129  mathnet (cited: 4)  mathscinet  zmath; E. A. Volkov, “On the investigation and solution by a difference method of nonlinear problems for an ordinary differential equation”, Proc. Steklov Inst. Math., 140 (1979), 111–139  mathscinet  zmath

   1975
72. E. A. Volkov, “Aposteriornaya otsenka pogreshnosti raznostnykh reshenii uravnenii Laplasa i Puassona”, Teoriya funktsii i ee prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Sergeyu Mikhailovichu Nikolskomu k ego semidesyatiletiyu, Tr. MIAN SSSR, 134, 1975, 47–62  mathnet  mathscinet  zmath; E. A. Volkov, “An a posteriori error estimate of difference solutions of the Laplace and Poisson equations”, Proc. Steklov Inst. Math., 134 (1977), 55–73  mathscinet  zmath

   1974
73. E. A. Volkov, “Asymptotic properties of an a posteriori estimate of the error in difference solutions of ordinary differential equations”, Differ. Equations, 10:12 (1974), 1750–1754 (1976)  mathnet  mathscinet  zmath  zmath
74. E. A. Volkov, “On the search for the maximum of a function and on the approximate global solution of a system of nonlinear equations”, Proc. Steklov Inst. Math., 131 (1974), 67–83  mathnet  mathscinet  zmath

   1973
75. E. A. Volkov, “On two-sided difference methods for ordinary differential equations”, Proceedings of Equadiff III, Third Czechoslovak Conf. on Differential Equations and their Applications (Brno, 1972), Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., 1, Purkyně Univ., Brno, 1973, 81–87  mathscinet
76. E. A. Volkov, “Pointwise estimates of the accuracy of a difference solution of a boundary-value problem for an ordinary differential equation”, Differ. Equations, 9:4 (1973), 545–552 (1975)  mathnet  mathscinet  zmath

   1972
77. E. A. Volkov, “The approximate solution of the Laplace and Poisson equations in weighted Hölder spaces”, Application of functional methods to the boundary value problems of mathematical physics, Proc. Third Soviet-Czechoslovak Conf. (Novosibirsk, 1971), Inst. Mat. Akad. Nauk SSSR Sibirsk. Otdel., Novosibirsk, 1972, 32–39  mathscinet
78. E. A. Volkov, “Boundaries of subdomains, Hölder weight classes and solutions in these classes of the Poisson equation”, Proc. Steklov Inst. Math., 117 (1972), 89–117  mathnet  mathscinet  zmath
79. E. A. Volkov, “Weighted error estimates for the mesh method of solving the Laplace and Poisson equations”, Proc. Steklov Inst. Math., 117 (1972), 119–134  mathnet  mathscinet  zmath
80. E. A. Volkov, “Approximate solution of the Laplace and Poisson equations in weighted Hölder spaces”, Proc. Steklov Inst. Math., 128 (1972), 85–129  mathnet  mathscinet  zmath
81. E. A. Volkov, “Two-sided difference methods for solving linear boundary-value problems for ordinary differential equations”, Proc. Steklov Inst. Math., 128 (1972), 131–152  mathnet  mathscinet  zmath
82. E. A. Volkov, “A bilateral difference method for nonlinear and spectral problems in ordinary differential equations”, Sov. Math. Dokl., 13 (1972), 1099–1102  mathscinet  zmath
83. E. A. Volkov, “Bilateral difference method for solving the boundary value problem for an ordinary differential equation”, Math. Notes, 11:4 (1972), 257–262  mathnet  crossref  mathscinet  zmath  adsnasa  elib  scopus

   1971
84. E. A. Volkov, “Effective error estimates for difference solutions of boundary value problems in ordinary differential equations”, Proc. Steklov Inst. Math., 112 (1971), 143–155  mathnet  mathscinet  zmath
85. E. A. Volkov, “The method of regular composite nets in solving the mixed boundary value problem for the Laplace equation”, Sov. Math. Dokl., 12 (1971), 84–88  mathscinet  zmath
86. E. A. Volkov, “A difference method of estimating errors in numerical solutions of boundary value problems for an ordinary differential equation”, Sov. Math. Dokl., 12 (1971), 530–534  mathscinet  zmath

   1970
87. E. A. Volkov, “A posteriori and weighted error estimates for solutions of Poisson's equation and their derivatives computed by the net method”, Sov. Math. Dokl., 11 (1970), 699–703  mathscinet  zmath

   1969
88. E. A. Volkov, “On differential properties of solutions of the Laplace and Poisson equations on a parellelepiped and efficient error estimates of the method of nets”, Proc. Steklov Inst. Math., 105 (1969), 54–78  mathnet  mathscinet  zmath
89. E. A. Volkov, “The differential properties of the solutions of Laplace's equation, and the errors in the method of nets with boundary values in $C_{2}$ and $C_{1,1}$”, U.S.S.R. Comput. Math. Math. Phys., 9:3 (1969), 97–112  mathnet  crossref  mathscinet  zmath  scopus (cited: 6)
90. E. A. Volkov, “Solving the Dirichlet problem for Laplace's equation for domains with curved corners by the method of nets”, Differ. Equations, 5:1 (1969), 122–131 (1972)  mathnet  mathscinet  zmath  zmath
91. E. A. Volkov, “On the conditions that the net method for the Laplace equation converges with speed $h^2$”, Math. Notes, 6:6 (1969), 866–872  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   1968
92. E. A. Volkov, “The unimprovability of the error estimate of the method of refinements with higher order differences in a certain class of solutions of Poisson's equation”, Differ. Equations, 4:1 (1968), 70–71  mathnet  mathscinet  zmath
93. E. A. Volkov, “On the inevitable error of the method of nets”, Math. Notes, 4:6 (1968), 865–868  mathnet  crossref  mathscinet  zmath  scopus
94. E. A. Volkov, “A mesh method for finite and infinite polygons and error bounds in terms of known quantities”, Proc. Steklov Inst. Math., 96 (1968), 187–234  mathnet  mathscinet  zmath
95. E. A. Volkov, “The method of composite meshes for finite and infinite regions with piecewise smooth boundary”, Proc. Steklov Inst. Math., 96 (1968), 145–185  mathnet  mathscinet  zmath

   1967
96. E. A. Volkov, “Remark on the approximation of functions by polynomials”, U.S.S.R. Comput. Math. Math. Phys., 7:6 (1967), 212–214  mathnet  crossref  mathscinet  zmath  scopus
97. E. A. Volkov, “The development of a grid method for the solution of Laplace's equation in finite or infinite regions with piecewise-smooth boundaries”, Math. Notes, 2:4 (1967), 747–755  mathnet  crossref  scopus

   1966
98. E. A. Volkov, “Methods of obtaining estimates for the error of the numerical solution of the Dirichlet problem in terms of known quantites”, Zh. Vychisl. Mat. Mat. Fiz., 6:supplement to № 4 (1966), 5–17  mathnet  mathscinet  zmath
99. E. A. Volkov, “The network method for the external Dirichlet problem”, U.S.S.R. Comput. Math. Math. Phys., 6:3 (1966), 126–138  mathnet  crossref  mathscinet  zmath  scopus
100. E. A. Volkov, “The net-method for finite and infinite regions with piecewise smooth boundary”, Sov. Math. Dokl., 7 (1966), 744–747  mathscinet  zmath
101. E. A. Volkov, “Effective estimates of the errors in solutions by the method of nets of boundary problems for the Laplace and Poisson equations on a rectangle and on certain triangles”, Proc. Steklov Inst. Math., 74 (1966), 57–90  mathnet  mathscinet  zmath
102. E. A. Volkov, “The method of irregular nets for finite and infinite regions with conical points”, Differ. Equations, 2:10 (1966), 702–709  mathnet  mathscinet  zmath
103. E. A. Volkov, “The method of composite meshes”, International Mathematical Congress. Theses of brief scientific announcements. Section 14, 1966, 28–29

   1965
104. E. A. Volkov, “Solution of the Dirichlet problem by the method of refining with higher-order differences”, Sov. Math. Dokl., 6 (1965), 1234–1237  mathscinet  zmath
105. E. A. Volkov, “Solution of the Dirichlet problem using higher-order differences. I”, Differ. Equations, 1 (1965), 733–745  mathnet  mathscinet  mathscinet  zmath  zmath
106. E. A. Volkov, “Solution of the Dirichlet problem using higher-order differences. II”, Differ. Equations, 1 (1965), 835–846  mathnet  mathscinet  zmath
107. E. A. Volkov, “The lack of basis for Batschelet's majorant method and an estimate of the error in the solution of the mixed boundary value problem by the mesh method”, U.S.S.R. Comput. Math. Math. Phys., 5:1 (1965), 167–172  mathnet  crossref  mathscinet  zmath  scopus
108. E. A. Volkov, “Differentiability properties of solutions of boundary value problems for the Laplace equation on a polygon”, Proc. Steklov Inst. Math., 77 (1965), 127–159  mathnet  mathscinet  zmath
109. E. A. Volkov, “Differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle”, Proc. Steklov Inst. Math., 77 (1965), 101–126  mathnet  mathscinet  zmath

   1964
110. E. A. Volkov, “Application of the Lagrange interpolation polynomial for solving the Dirichlet problem for the Poisson equation by the method of nets”, U.S.S.R. Comput. Math. Math. Phys., 4:3 (1964), 93–103  mathnet  crossref  mathscinet  zmath  scopus
111. E. A. Volkov, “Effective error estimates for net method solutions of the Dirichlet problem for Laplace's equation on polygons”, Sov. Math. Dokl., 5 (1964), 483–487  mathscinet  zmath

   1963
112. E. A. Volkov, “The removal of singularities in the solution of boundary problems for the Laplace equation in a region with a smooth boundary”, U.S.S.R. Comput. Math. Math. Phys., 3:1 (1963), 139–152  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
113. E. A. Volkov, “Methods of refinement using higher-order differences and $h^2$-extrapolation”, Sov. Math. Dokl., 4 (1963), 671–674  mathscinet  zmath

   1962
114. E. A. Volkov, “Solutions of boundary value problems for Poisson's equation in a rectangle”, Sov. Math. Dokl., 3 (1962), 1524–1528  mathnet  mathscinet  mathscinet  zmath

   1961
115. E. A. Volkov, “O metode setok dlya kraevoi zadachi s kosoi i normalnoi proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 607–621  mathnet  mathscinet (cited: 1)  zmath; E. A. Volkov, “On the method of nets for a boundary problem with an oblique and a normal derivative”, U.S.S.R. Comput. Math. Math. Phys., 1:3 (1962), 705–722  crossref  mathscinet  zmath  scopus (cited: 1)
116. E. A. Volkov, “Ob odnom sposobe vychisleniya ravnomernykh priblizhenii funktsii”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 343–345  mathnet  zmath; E. A. Volkov, “A method for computing uniform approximations to functions”, U.S.S.R. Comput. Math. Math. Phys., 1:2 (1962), 358–361  crossref  zmath  scopus

   1957
117. E. A. Volkov, “K voprosu o reshenii metodom setok vnutrennei zadachi Dirikhle dlya uravneniya Laplasa”, Vychislitelnaya matematika, 1, Izd. AN SSSR, M., 1957, 34–61  mathscinet (cited: 1); E. A. Volkov, “On the solution by the grid method of the inter Dirichlet problem for the Laplace equation”, Amer. Math. Soc. Transl. (2), 24 (1963), 279–307  mathscinet  zmath
118. E. A. Volkov, “Issledovanie odnogo sposoba povysheniya tochnosti metoda setok pri reshenii uravneniya Puassona”, Vychislitelnaya matematika, 1, Izd. AN SSSR, M., 1957, 62–80  mathscinet (cited: 1)  zmath; E. A. Volkov, “A method for improving the accuracy of grid solutions of the Poisson equation”, Amer. Math. Soc. Transl. (2), 35 (1964), 117–136

   1955
119. E. A. Volkov, “On numerical solution of the problem of Lavrent'ev-Bicadze”, Dokl. Akad. Nauk SSSR (N.S.), 103:5 (1955), 755–758  mathscinet  zmath
120. E. A. Volkov, “On a solution by the method of grids of equations of elliptic type with boundary conditions containing derivatives”, Dokl. Akad. Nauk SSSR (N.S.), 102:3 (1955), 437–440  mathscinet  zmath

   1954
121. E. A. Volkov, “Estimates of the error in the solution by the method of grids of Dirichlet's problem for the Laplace equation”, Dokl. Akad. Nauk SSSR (N.S.), 96:5 (1954), 897–899  mathscinet  zmath
122. E. A. Volkov, “On a method of increasing the accuracy of the method of grids”, Dokl. Akad. Nauk SSSR (N.S.), 96:4 (1954), 685–688  mathscinet  zmath

   1950
123. E. A. Volkov, “A mechanical apparatus for the solution of Poisson's equation and certain other equations of elliptic type”, Vestnik Moskov. Univ. Ser. Fiz.-Mat. Estest. Nauk, 1950, no. 10, 3–17  mathscinet
Home page

© Steklov Mathematical Institute of RAS, 2004–2017