Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Slavnov Nikita Andreevich
(full list of publications)
| by years | scientific publications | by types |



   2018
1. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278 , arXiv: 1705.09219  mathnet  crossref  scopus

   2017
2. A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99  mathnet  crossref  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 3)
3. A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004 , 22 pp., arXiv: 1606.03573  mathnet  crossref  isi (cited: 5)  elib  scopus (cited: 5)
4. Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31 , arXiv: 1604.02311  mathnet  crossref
5. J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech., 2017, 43106 , 21 pp., arXiv: 1701.05866  mathnet  crossref  isi (cited: 1)  scopus (cited: 1)
6. N. A. Slavnov, “Algebraic Bethe ansatz”, Lekts. Kursy NOC, 27, Steklov Math. Institute of RAS, Moscow, 2017, 3–189  mathnet  mathnet  crossref  elib
7. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017), 277–311 , arXiv: 1704.08173  mathnet  crossref  isi  scopus (cited: 1)

   2016
8. Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 99 , 22 pp., arXiv: 1605.06419  mathnet (cited: 3)  crossref  isi (cited: 3)  elib  scopus (cited: 5)
9. A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 , arXiv: 1607.04978  mathnet  crossref  isi (cited: 6)  elib  scopus (cited: 6)
10. N. A. Slavnov, “Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1624–1644  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib  scopus (cited: 3)
11. A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005 , 28 pp., arXiv: 1605.09189  mathnet  crossref  isi (cited: 4)  elib  scopus (cited: 8)

   2015
12. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064 , 18 pp., arXiv: 1502.01966  mathnet (cited: 7)  crossref  mathscinet (cited: 1)  isi (cited: 10)  elib (cited: 2)  scopus (cited: 12)
13. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481 , arXiv: 1412.6037  mathnet (cited: 7)  crossref  mathscinet (cited: 5)  isi (cited: 16)  elib (cited: 8)  scopus (cited: 16)
14. N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech. Theory Exp., 2015, no. 03, P03019 , 25 pp., arXiv: 1501.06253  mathnet (cited: 1)  crossref  mathscinet (cited: 1)  isi (cited: 7)  elib  scopus (cited: 9)
15. N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
16. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063 , 20 pp., arXiv: 1501.07566  mathnet (cited: 7)  crossref  mathscinet (cited: 2)  isi (cited: 11)  elib (cited: 4)  scopus (cited: 11)
17. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546  mathnet (cited: 1)  crossref  mathscinet (cited: 2)  zmath  isi (cited: 8)  elib (cited: 4)  scopus (cited: 9)

   2014
18. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Phys. A, 47 (2014), 105202 , 16 pp., arXiv: 1310.3253  mathnet  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 5)  scopus (cited: 6)
19. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nucl. Phys. B, 881 (2014), 343–368 , arXiv: 1312.1488  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 13)  elib (cited: 9)  scopus (cited: 14)
20. S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335 , arXiv: 1311.3500  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 7)
21. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ thigonometric $R$-matrix: general case”, Theoret. and Math. Phys., 180:1 (2014), 795–814 , arXiv: 1401.4355  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 5)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 6)
22. S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584 , arXiv: 1406.5125  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 5)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 6)

   2013
23. N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
24. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 2, P02020 , 24 pp., arXiv: 1210.0768  mathnet  crossref  mathscinet (cited: 7)  isi (cited: 10)  scopus (cited: 17)
25. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 4, P04033 , 16 pp., arXiv: 1211.3968  mathnet  crossref  mathscinet (cited: 4)  isi (cited: 12)  scopus (cited: 20)
26. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix”, SIGMA, 9 (2013), 058 , 23 pp., arXiv: 1304.7602  mathnet (cited: 11)  crossref  mathscinet (cited: 2)  isi (cited: 9)  scopus (cited: 11)

   2012
27. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Form factor approach to dynamical correlation functions in critical models”, J. Stat. Mech. Theory Exp., 2012, P09001 , 33 pp., arXiv: 1206.2630  mathnet  crossref  mathscinet (cited: 2)  isi (cited: 28)  scopus (cited: 24)
28. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P09003 , 17 pp., arXiv: 1206.4931  mathnet  crossref  mathscinet (cited: 4)  isi (cited: 13)  scopus (cited: 18)
29. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P10017 , 25 pp., arXiv: 1207.0956  mathnet  crossref  mathscinet (cited: 8)  isi (cited: 18)  scopus (cited: 28)
30. N. A. Slavnov, “Form factor approach to the Calculation of correlation functions of integrable models”, Geometric methods in physics (Bialowieza, Poland, June 24–30, 2012), Trends in Mathematics, eds. P. Kielanowski, S. Twareque Ali, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer, Basel, 2012, 209–220

   2011
31. N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “The thermodynamic limit of particle-hole form factors in the massless $XXZ$ Heisenberg chain”, J. Stat. Mech. Theory Exp., 2011, P05028 , 34 pp.  crossref  isi (cited: 22)  scopus (cited: 22)
32. K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2011, P03018 , 38 pp.  crossref  isi (cited: 15)  scopus (cited: 9)
33. K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Correlation functions of one-dimensional bosons at low temperature”, J. Stat. Mech. Theory Exp., 2011, P03019 , 25 pp.  crossref  isi (cited: 22)  scopus (cited: 10)
34. N. A. Slavnov, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation, Lekts. Kursy NOC, 18, Steklov Math. Inst., RAS, Moscow, 2011 , 120 pp.  mathnet  mathnet  crossref  crossref  zmath  elib
35. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “A form factor approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2011, P12010 , 28 pp., arXiv: hep-th/1110.0803  crossref  adsnasa  isi (cited: 38)  scopus (cited: 32)

   2010
36. N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, Theoret. and Math. Phys., 165:1 (2010), 1262–1274  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 4)  elib (cited: 5)  elib (cited: 5)  scopus (cited: 5)

   2009
37. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain”, J. Math. Phys., 50:9 (2009), 095209 , 24 pp.  crossref  mathscinet (cited: 6)  zmath  adsnasa  isi (cited: 35)  scopus (cited: 37)
38. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain, 2009 , arXiv: 0903.2916  adsnasa
39. N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Riemann-Hilbert approach to a generalized sine kernel and applications”, Comm. Math. Phys., 291:3 (2009), 691–761  crossref  mathscinet (cited: 10)  zmath  adsnasa  isi (cited: 30)  elib (cited: 29)  scopus (cited: 29)
40. N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009, no. 4, P04003 , 66 pp.  crossref  mathscinet (cited: 11)  isi (cited: 60)  scopus (cited: 62)

   2008
41. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, Riemann–Hilbert approach to a generalized sine kernel and applications, 2008 , arXiv: 0805.4586  adsnasa
42. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions, 2008 , arXiv: 0808.0227
43. N. Kitanine, K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. II”, J. Stat. Mech. Theory Exp., 2008, no. 7, P07010 , 33 pp.  crossref  mathscinet (cited: 6)  isi (cited: 24)  scopus (cited: 28)

   2007
44. N. Kitanine, K. K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. I”, J. Stat. Mech. Theory Exp., 2007, no. 10, P10009 , 37 pp.  crossref  mathscinet (cited: 6)  isi (cited: 39)  scopus (cited: 45)
45. N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 31)  elib (cited: 26)  elib (cited: 26)  scopus (cited: 31)
46. N. A. Slavnov, “Correlation functions of the $XXZ$ Heisenberg chain for $\Delta=1/2$”, Theoret. and Math. Phys., 150:2 (2007), 259–265  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
47. N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On correlation functions of integrable models associated to the six-vertex $R$-matrix”, J. Stat. Mech. Theory Exp., 2007, no. 1, P01022 , 17 pp.  crossref  mathscinet (cited: 6)  isi (cited: 21)  scopus (cited: 20)
48. J.-S. Caux, P. Calabrese, N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2007, P01008  crossref  isi (cited: 93)  scopus (cited: 44)

   2005
49. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the algebraic Bethe Ansatz approach to the correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain”, Solvable lattice models, RIMS, Kyoto, 2005, 14–48 , arXiv: hep-th/0505006v1
50. N. A. Slavnov, “On Scalar Products in the Algebraic Bethe Ansatz”, Proc. Steklov Inst. Math., 251 (2005), 246–253  mathnet  mathscinet  zmath
51. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nuclear Phys. B, 712:3 (2005), 600–622  crossref  mathscinet (cited: 10)  zmath  adsnasa  isi (cited: 51)  elib (cited: 47)  scopus (cited: 51)
52. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Dynamical correlation functions of the $XXZ$ spin-$1/2$ chain”, Nuclear Phys. B, 729:3 (2005), 558–580  crossref  mathscinet (cited: 8)  zmath  adsnasa  isi (cited: 29)  elib (cited: 28)  scopus (cited: 30)
53. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the spin-spin correlation functions of the $XXZ$ spin-$\frac12$ infinite chain”, J. Phys. A, 38:34 (2005), 7441–7460  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 13)  elib (cited: 18)  scopus (cited: 17)
54. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Exact results for the $\sigma^2$ two-point function of the $XXZ$ chain at $\Delta=1/2$”, J. Stat. Mech. Theory Exp., 2005, no. 9, L09002 , 7 pp.  crossref  mathscinet (cited: 3)  isi (cited: 11)  scopus (cited: 5)

   2004
55. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain: recent advances”, Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models, Internat. J. Modern Phys. A, 19, no. May, suppl., 2004, 248–266  crossref  mathscinet (cited: 3)  zmath  adsnasa  isi (cited: 4)  scopus (cited: 4)
56. N. A. Slavnov, “Emptiness Formation Probability in the Spin-1/2 $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 139:1 (2004), 529–535  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus

   2003
57. N. A. Slavnov, “Integral Representations for Correlation Functions of the $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 135:3 (2003), 828–835  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2002
58. N. A. Slavnov, “The partition function of the six-vertex model as a Fredholm determinant”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 207–218  mathscinet  zmath
59. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641 (2002), 487–518  crossref  mathscinet (cited: 15)  zmath  adsnasa  isi (cited: 95)  elib (cited: 94)  scopus (cited: 101)
60. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455  crossref  mathscinet (cited: 7)  zmath  adsnasa  isi (cited: 42)  elib (cited: 47)  scopus (cited: 48)
61. N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain at $\Delta=\frac12$”, J. Phys. A, 35:27 (2002), L385–L388  crossref  mathscinet (cited: 8)  zmath  adsnasa  isi (cited: 42)  scopus (cited: 48)
62. N. Kitanine, J. M. Maillet, N.A. Slavnov, V. Terras, “Large distance asymptotic behavior of the emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain”, J. Phys. A, 35:49 (2002), L753–L758  crossref  mathscinet (cited: 3)  zmath  adsnasa  isi (cited: 44)  scopus (cited: 49)

   2001
63. N. Kitanine A., N. A. Slavnov, “The algebraic Bethe ansatz and the correlation functions of the Heisenberg magnet”, Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 243–264  mathscinet  zmath

   2000
64. V. Korepin, N. Slavnov, “Quantum inverse scattering method and correlation functions”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 115–121  mathscinet  zmath  isi (cited: 7)
65. N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), eds. M. Boiti et al., World Sci. Publ., River Edge, NJ, 2000, 196–202  crossref  mathscinet  zmath

   2003
66. N. A. Slavnov, “Fredholm determinant representation for the partition function of the six-vertex model”, J. Math. Sci. (N. Y.), 115:1 (2003), 2058–2065  mathnet  crossref  mathscinet  zmath  adsnasa

   2000
67. H. Frahm, N. A. Slavnov, “Magnetic properties of doped Heisenberg chains”, Nuclear Phys. B, 575:3 (2000), 485–503  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   1999
68. V. E. Korepin, N. A. Slavnov, “A closed expression for quantum correlation functions of exactly solvable models of quantum field theory”, Path integrals from peV to TeV (Florence, 1998), World Sci. Publ., River Edge, NJ, 1999, 71–79  mathscinet
69. V. E. Korepin, N. A. Slavnov, “Form factors in the finite volume” (Torino, 1998), Internat. J. Modern Phys. B, Proceedings of the Euroconference on New Symmetries in Statistical Mechanics and Condensed Matter Physics, 13, no. 24-25, 1999, 2933–2941  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 21)  scopus (cited: 22)
70. V. Korepin, N. Slavnov, “Thermodynamics of quantum nonlinear Schrödinger equation”, XIIth International Congress of Mathematical Physics (ICMP '97) (Brisbane), Int. Press, Cambridge, MA, 1999, 345–349  mathscinet  zmath
71. V. E. Korepin, N. A. Slavnov, “The Form Factors in a Finite Volume”, Proc. Steklov Inst. Math., 226 (1999), 72–85  mathnet  mathscinet  zmath
72. N. A. Slavnov, “Integral equations for correlation functions of a quantum one-dimensional Bose gas”, Theoret. and Math. Phys., 121:1 (1999), 1358–1376  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  elib (cited: 7)  scopus (cited: 7)
73. A. R. Its, N. A. Slavnov, “On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case”, Theoret. and Math. Phys., 119:2 (1999), 541–593  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  elib (cited: 8)  scopus (cited: 8)
74. H. Frahm, N. A. Slavnov, “New solutions to the reflection equation and the projecting method”, J. Phys. A, 32:9 (1999), 1547–1555  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 31)  scopus (cited: 31)

   1998
75. V. E. Korepin, N. A. Slavnov, “The determinant representation for quantum correlation functions of the sinh-Gordon model”, J. Phys. A, 31:46 (1998), 9283–9295  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 8)  elib (cited: 9)  scopus (cited: 9)
76. N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Theoret. and Math. Phys., 116:3 (1998), 1021–1023  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)

   2001
77. N. A. Slavnov, “Asymptotics of the Fredholm determinant associated with the correlation functions of the quantum nNonlinear Schrödinger equation”, J. Math. Sci. (New York), 104:3 (2001), 1135–1143  mathnet  crossref  mathscinet  zmath  scopus

   1998
78. V. Korepin, N. Slavnov, “The new identity for the scattering matrix of exactly solvable models”, Eur. Phys. J. B Condens. Matter Phys., 5:3 (1998), 555–557  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 12)

   2000
79. N. A. Slavnov, “On an identity for dual fields”, J. Math. Sci. (New York), 100:2 (2000), 2181–2188  mathnet  crossref  mathscinet  zmath  scopus (cited: 4)

   1997
80. T. Kojima, V. E. Korepin, N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum Nonlinear Schrödinger equation”, Comm. Math. Phys., 188:3 (1997), 657–689  crossref  mathscinet (cited: 10)  zmath  adsnasa  isi (cited: 49)  scopus (cited: 47)
81. T. Kojima, V. E. Korepin, N. A. Slavnov, “Completely integrable equation for the quantum correlation function of nonlinear Schrödinger equation”, Comm. Math. Phys., 189:3 (1997), 709–728  crossref  mathscinet (cited: 3)  zmath  adsnasa  isi (cited: 9)  scopus (cited: 12)
82. V. E. Korepin, N. A. Slavnov, “Normal ordering in the theory of correlation functions of exactly solvable models”, J. Phys. A, 30:24 (1997), 8623–8633  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 4)  scopus (cited: 4)
83. V. E. Korepin, N. A. Slavnov, “The Riemann–Hilbert problem associated with the quantum nonlinear Schrödinger equation”, J. Phys. A, 30:23 (1997), 8241–8255  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 4)  scopus (cited: 6)
84. V. E. Korepin, N. A. Slavnov, “Time and temperature dependent correlation functions of 1D models of quantum statistical mechanics”, Phys. Lett. A, 236:3 (1997), 201–205  crossref  mathscinet  zmath  adsnasa  isi (cited: 12)  scopus (cited: 12)

   1996
85. N. A. Slavnov, “Fredholm determinants and $\tau$-functions”, Theoret. and Math. Phys., 109:3 (1996), 1523–1535  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 1)
86. N. A. Slavnov, “Cancellation of dual fields in free fermion models with trigonometric $R$-matrix”, Theoret. and Math. Phys., 108:2 (1996), 993–1002  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  scopus (cited: 2)
87. N. A. Slavnov, “Differential equations for multipoint correlation functions in one-dimensional impenetrable bose-gas”, Theoret. and Math. Phys., 106:1 (1996), 131–142  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  scopus (cited: 7)

   1998
88. A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “On correlation functions of the $XY$ model”, J. Math. Sci. (New York), 88:2 (1998), 224–232  mathnet  crossref  mathscinet  zmath  zmath  zmath  scopus (cited: 5)

   1995
89. A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “The matrix Riemann–Hilbert problem and differential equations for correlation functions of the $XXO$ Heisenberg chain”, St. Petersburg Math. J., 6:2 (1995), 315–326  mathnet  mathscinet  zmath

   1993
90. Its A. R., Izergin A. G., Korepin V. E., N. A. Slavnov, “The quantum correlation function as the $\tau$ function of classical differential equations”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 407–417  crossref  mathscinet (cited: 12)  zmath

   1996
91. A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Integrable differential equations for temperature correlation functions of the Heisenberg $XXO$ chain”, J. Math. Sci., 80:3 (1996), 1747–1759  mathnet  crossref  mathscinet  zmath  zmath  zmath  scopus

   1993
92. A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Temperature correlations of quantum spins”, Phys.l Rev. Lett., 70:11 (1993), 1704–1706  crossref  adsnasa  isi (cited: 75)  scopus (cited: 76)

   1991
93. V. E. Korepin, N. A. Slavnov, “Correlation functions of fields in One-dimensional Bose-gas”, Comm. Math. Phys., 136:3 (1991), 633–644  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 17)  scopus (cited: 16)

   1990
94. Bogoliubov N. M., Korepin V. E., N. A. Slavnov, “Time-temperature correlation functions of densities of one-dimensional Bose gas”, Solitons and applications (Dubna, 1989), World Sci. Publ., River Edge, NJ, 1990, 159–169  mathscinet
95. N. A. Slavnov, “Nonequal-time current correlation function in a one-dimensional Bose gas”, Theoret. and Math. Phys., 82:3 (1990), 273–282  mathnet  crossref  mathscinet  adsnasa  isi (cited: 44)  scopus (cited: 47)
96. V. E. Korepin, N. A. Slavnov, “Time dependence correlation function of an impenetrable Bose-gas as a Fredholm minor. I”, Comm. Math. Phys., 129:1 (1990), 103–113  crossref  mathscinet (cited: 10)  zmath  adsnasa  isi (cited: 36)  scopus (cited: 39)
97. A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037  crossref  mathscinet (cited: 77)  zmath  adsnasa  isi (cited: 1)
98. V. E. Korepin, N. A. Slavnov, “Time dependence of the density-density temperature correlation function of one-dimensional Bose-gas”, Nuclear Phys. B, 340:2-3 (1990), 759–766  crossref  mathscinet  adsnasa  isi (cited: 1)  scopus (cited: 1)

   1989
99. N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79:2 (1989), 502–508  mathnet  crossref  mathscinet  adsnasa  isi (cited: 173)  scopus (cited: 176)

   1987
100. A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Finite-temperature correlation functions of Heisenberg antiferromagnet”, Theoret. and Math. Phys., 72:2 (1987), 878–884  mathnet  crossref  mathscinet  adsnasa  isi (cited: 1)  scopus

   1986
101. V. E. Korepin, N. A. Slavnov, “Correlation function of currents in a one-dimensional Bose gas”, Theoret. and Math. Phys., 68:3 (1986), 955–960  mathnet  crossref  mathscinet  adsnasa  isi (cited: 3)  scopus (cited: 3)
Home page

© Steklov Mathematical Institute of RAS, 2004–2018