Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | Zentralblatt MATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Katanaev Mikhail Orionovich
(full list of publications)
| by years | scientific publications | by types |


Articles


   2017
1. M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
2. M. O. Katanaev, “Normal coordinates in affine geometry”, Physics and mathematics, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, Kazan University, Kazan, 2017, 47–63  mathnet  isi  elib
3. M. O. Katanaev, “Chern-Simons term in the geometric theory of defects”, Phys.Rev.D, 2017 (to appear)

   2016
4. M. O. Katanaev, “Rotational elastic waves in a cylindrical waveguide with wedge dislocation”, J. Phys. A, 49:8 (2016), 85202 , 8 pp.  mathnet  crossref  isi  elib  scopus (cited: 1)
5. M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700  mathnet  crossref  crossref  isi  elib  scopus (cited: 1)

   2015
6. M. O. Katanaev, “Rotational elastic waves in double wall tube”, Phys. Lett. A, 379:24–25 (2015), 1544–1548 , arXiv: 1503.01759  mathnet  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)
7. M. O. Katanaev, “Lorentz Invariant Vacuum Solutions in General Relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142  mathnet  crossref  crossref  isi (cited: 2)  elib  elib  scopus (cited: 1)
8. M. O. Katanaev, “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 , 5 pp., arXiv: 1511.00991  mathnet (cited: 1)  crossref  mathscinet  isi (cited: 1)  elib  scopus (cited: 1)

   2014
9. M. O. Katanaev, “Passing the Einstein–Rosen bridge”, Mod. Phys. Lett. A, 29:17 (2014), 1450090 , 7 pp., arXiv: 1310.7390  mathnet  crossref  mathscinet  zmath  isi  scopus

   2013
10. M. O. Katanaev, “Point massive particle in general relativity”, Gen. Rel. Grav., 45:10 (2013), 1861–1875 , arXiv: 1207.3481  mathnet  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 6)  scopus (cited: 6)

   2012
11. M. O. Katanaev, I. G. Mannanov, “Wedge dislocations, three-dimensional gravity, and the Riemann–Hilbert problem”, Phys. Part. Nucl., 43 (2012), 639–643  mathnet  crossref  isi  elib  scopus
12. M. O. Katanaev, I. G. Mannanov, “Wedge dislocations and three-dimensional gravity”, p-Adic Numb. Ultramet. Anal. Appl., 4:1 (2012), 5–19  mathnet  crossref  crossref  mathscinet  zmath  scopus

   2011
13. M. O. Katanaev, “Simple proof of the adiabatic theorem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1(22) (2011), 99–107  mathnet  crossref  rsci  elib
14. M. O. Katanaev, “Adiabatic theorem for finite dimensional quantum mechanical systems”, Russian Phys. J., 2011, no. 3, 342–353 , arXiv: 0909.0370  crossref  mathscinet  adsnasa  isi  elib (cited: 3)  elib (cited: 3)  scopus (cited: 2)
15. M. O. Katanaev, “On geometric interpretation of the Aharonov–Bohm effect”, Russian Phys. J., 54:5 (2011), 507–514  crossref  mathscinet  adsnasa  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
16. M. O. Katanaev, “O geometricheskoi interpretatsii fazy Berri”, Izvestiya vuzov. Fizika, 2011, no. 10, 26–35 , arXiv: 1212.1782  mathnet  mathscinet  zmath  adsnasa  elib; M. O. Katanaev, “On geometric interpretation of the Berry phase”, Russian Phys. J., 54:10 (2012), 1082–1092 , arXiv: 1212.1782  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)

   2010
17. M. O. Katanaev, “Global solutions in gravity. Euclidean signature”, Fundamental interactions, eds. D. Grumiller, A. Rebhan, D. Vassilevich, World Sci. Publ., Hackensack, NJ, 2010, 249–266 , arXiv: 0808.1559  mathscinet (cited: 1)  zmath  adsnasa
18. G. de Berredo-Peixoto, M. O. Katanaev, E. Konstantinova, I. Shapiro, “Schrodinger equation in the space with cylindrical geometric defect and possible application to multi-wall nanotubes”, Nuovo Cimento, B125 (2010), 915–931 , arXiv: 1010.2913  crossref  isi (cited: 2)  scopus (cited: 3)
19. M. O. Katanaev, “Torsion and Burgers vector of a tube dislocation”, 10th Hellenic School and Workshops on Elementary Particle Physics and Gravity (Corfu, Greece, 8–12 Sep 2010), PoS CNCFG, 2010, 022 , 7 pp.

   2009
20. G. de Berredo-Peixoto, M. O. Katanaev, “Tube dislocations in gravity”, J. Math. Phys., 50 (2009), 042501 , 23 pp., arXiv: 0810.0243  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 5)  scopus (cited: 7)

   2008
21. M. O. Katanaev, “Akusticheskie fonony v gidrodinamike i metrika Shvartsshilda”, Problemy sovremennoi teoreticheskoi fiziki, K 60-letiyu I. L. Bukhbindera, Tomskii gos. pedagogicheskii un-t, 2008, 208–215

   2007
22. G. de Berredo-Peixoto, M. O. Katanaev, “Inside the BTZ black hole”, Phys. Rev. D, 75:2 (2007), 024004 , 13 pp., arXiv: gr-qc/0611143  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 3)  scopus (cited: 3)

   2006
23. M. O. Katanaev, “Polynomial form of the Hilbert–Einstein action”, Gen. Relativity Gravitation, 38:8 (2006), 1233–1240 , arXiv: gr-qc/0507026  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 3)  scopus (cited: 3)
24. M. O. Katanaev, “Polynomial Hamiltonian form of general relativity”, Theoret. and Math. Phys., 148:3 (2006), 1264–1294  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 3)

   2005
25. M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701  mathnet  crossref  crossref  adsnasa  isi (cited: 35)  elib (cited: 34)  elib (cited: 34)  scopus (cited: 39)
26. M. O. Katanaev, “Introduction to the geometric theory of defects”, Proceedings of 3rd Summer School in Modern Mathematical Physics (Zlatibor, Serbia and Montenegro, 20–31 Aug 2004), eds. B. Dragovich, IFTP, Belgrade, 2005, 65–73

   2004
27. M. O. Katanaev, “One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model”, Theoret. and Math. Phys., 138:2 (2004), 163–176  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  elib (cited: 9)  scopus (cited: 9)

   2003
28. M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, Theoret. and Math. Phys., 135:2 (2003), 733–744  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 18)  elib (cited: 19)  scopus (cited: 20)

   2002
29. M. O. Katanaev, “Effective action for scalar fields in two-dimensional gravity”, Ann. Physics, 296:1 (2002), 1–50 , arXiv: gr-qc/0101033  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 12)  elib (cited: 13)  scopus (cited: 13)

   2000
30. M. O. Katanaev, “Global solutions in gravity”, Constrained dynamics and quantum gravity (Villasimius, 1999), Nuclear Phys. B Proc. Suppl., 88, 2000, 233–236 , arXiv: gr-qc/9912039  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 5)  elib (cited: 6)  scopus (cited: 6)
31. M. O. Katanaev, “Global Solutions in Gravity. Lorentzian Signature”, Proc. Steklov Inst. Math., 228 (2000), 158–183  mathnet  mathscinet  zmath

   1999
32. M. O. Katanaev, Klösch, W. Kummer, “Global properties of warped solutions in general relativity”, Ann. Physics, 276:2 (1999), 191–222 , arXiv: gr-qc/9807079  crossref  mathscinet (cited: 5)  zmath  adsnasa  isi (cited: 18)  elib (cited: 19)  scopus (cited: 22)
33. M. O. Katanaev, I. V. Volovich, “Scattering on dislocations and cosmic strings in the geometric theory of defects”, Ann. Physics, 271:2 (1999), 203–232 , arXiv: gr-qc/9801081  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 26)  elib (cited: 28)  scopus (cited: 31)

   1998
34. M. F. Ertl, M. O. Katanaev, W. Kummer, “Generalized supergravity in two dimensions”, Nuclear Phys. B, 530:1-2 (1998), 457–486 , arXiv: hep-th/9710051  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 5)  elib (cited: 6)  scopus (cited: 6)

   1997
35. M. O. Katanaev, W. Kummer, H. Liebl, “On the completeness of the black hole singularity in 2D dilaton theories”, Nuclear Phys. B, 486:1-2 (1997), 353–370 , arXiv: gr-qc/9602040  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 48)  elib (cited: 52)  scopus (cited: 53)
36. M. O. Katanaev, “Euclidean two-dimensional gravity with torsion”, J. Math. Phys., 38:2 (1997), 946–980  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  elib (cited: 7)  scopus (cited: 8)

   1996
37. M. O. Katanaev, W. Kummer, H. Liebl, “Geometric interpretation and classification of global solutions in generalized dilaton gravity”, Phys. Rev. D (3), 53:10 (1996), 5609–5618 , arXiv: gr-qc/9511009  crossref  mathscinet (cited: 1)  adsnasa  isi (cited: 39)  elib (cited: 42)  scopus (cited: 42)

   1994
38. M. O. Katanaev, “Canonical quantization of the string with dynamical geometry and anomaly free nontrivial string in two dimensions”, Nuclear Phys. B, 416:2 (1994), 563–605 , arXiv: hep-th/0101168  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 15)  scopus (cited: 12)

   1993
39. M. O. Katanaev, “New constraints in dynamical torsion theory”, Gen. Relativity Gravitation, 25:4 (1993), 349–359 , arXiv: gr-qc/0101053  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 6)  elib (cited: 4)  scopus (cited: 6)
40. M. O. Katanaev, “All universal coverings of two-dimensional gravity with torsion”, J. Math. Phys., 34:2 (1993), 700–736  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi (cited: 28)  scopus (cited: 23)

   1992
41. M. O. Katanaev, I. V. Volovich, “Theory of defects in solids and three-dimensional gravity”, Ann. Physics, 216:1 (1992), 1–28  crossref  mathscinet (cited: 14)  zmath  adsnasa  isi (cited: 235)  scopus (cited: 246)

   1991
42. M. O. Katanaev, “Conformal invariance, extremals, and geodesics in two-dimensional gravity with torsion”, J. Math. Phys., 32:9 (1991), 2483–2496  crossref  mathscinet  adsnasa  isi (cited: 30)  scopus (cited: 24)

   1990
43. M. O. Katanaev, “Complete integrability of two-dimensional gravity with dynamical torsion”, J. Math. Phys., 31:4 (1990), 882–891  crossref  mathscinet  zmath  adsnasa  isi (cited: 35)  scopus (cited: 28)
44. M. O. Katanaev, I. V. Volovich, “Two-dimensional gravity with dynamical torsion and strings”, Ann. Physics, 197:1 (1990), 1–32  crossref  mathscinet (cited: 2)  zmath  adsnasa  isi (cited: 83)  elib (cited: 27)  scopus (cited: 60)

   1989
45. M. O. Katanaev, “A new integrable model: two-dimensional gravity with dynamical torsion”, Soviet Phys. Dokl., 34:11 (1989), 982–983 (1990)  mathnet  mathscinet  adsnasa  adsnasa
46. M. O. Katanaev, “String with dynamical geometry. Hamiltonian analysis in conformal gauge”, Theoret. and Math. Phys., 80:2 (1989), 838–848  mathnet  crossref  mathscinet  adsnasa  isi (cited: 4)  scopus (cited: 5)

   1988
47. M. O. Katanaev, “Nonrelativistic string”, Soviet J. Nuclear Phys., 48:1 (1988), 296–298

   1987
48. M. O. Katanaev, “Kinetic part of dynamical torsion theory”, Theoret. and Math. Phys., 72:1 (1987), 735–741  mathnet  crossref  zmath  adsnasa  isi (cited: 1)  scopus (cited: 2)
49. M. O. Katanaev, “Largescale limit of dynamical torsion theory”, Sov. Phys. J., 30:5 (1987), 392–396  crossref  scopus

   1986
50. I. V. Volovich, M. O. Katanaev, “Quantum strings with a dynamic geometry”, JETP Lett., 43:5 (1986), 267–269  mathscinet  adsnasa  isi (cited: 3)
51. M. O. Katanaev, I. V. Volovich, “String model with dynamical geometry and torsion”, Phys. Lett. B, 175:4 (1986), 413–416 , arXiv: hep-th/0209014  crossref  mathscinet (cited: 2)  adsnasa  isi (cited: 83)  elib (cited: 50)  scopus (cited: 77)
52. M. O. Katanaev, “Dynamical torsion and the problem of the indefinite metric in the general theory of relativity”, Soviet J. Nuclear Phys., 43:3 (1986), 490–491  mathscinet  isi
53. I. V. Volovich, M. O. Katanaev, “Scalar fields and dynamical torsion in Kaluza–Klein theories”, Theoret. and Math. Phys., 66:1 (1986), 53–60  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 3)

   1985
54. M. O. Katanayev, I. V. Volovich, “Higgs fields in Kaluza-Klein theory with dynamical torsion”, Phys. Lett. B, 156:5-6 (1985), 327–330  crossref  mathscinet  adsnasa  isi (cited: 15)  elib  scopus (cited: 15)
55. M. O. Katanaev, “Kinetic term for the Lorentz connection”, Theoret. and Math. Phys., 65:1 (1985), 1043–1050  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 1)

   1983
56. M. O. Katanaev, “Linear connection in theories of Kaluza–Klein type”, Theoret. and Math. Phys., 56:2 (1983), 795–798  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 1)
57. M. O. Katanaev, “Gauge theory for the Poincaré group”, Theoret. and Math. Phys., 54:3 (1983), 248–252  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  scopus (cited: 6)

Books


   2015
58. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 2, Lekts. Kursy NOC, 26, Steklov Math. Institute of RAS, Moscow, 2015 , 186 pp.  mathnet  mathnet  crossref  elib
59. M. O. Katanaev, Geometrical methods in mathematical physics. Applications in quantum mechanics. Part 1, Lekts. Kursy NOC, 25, Steklov Math. Institute of RAS, Moscow, 2015 , 176 pp.  mathnet  mathnet  crossref  elib

ArXiv


   2016
60. M. O. Katanaev, Geometrical methods in mathematical physics, Manuscript in Russian. Extended version of lectures delivered at the Academic Educational Center at Steklov Mathematical Institute during seven semesters, 2016 , xvi+1570 pp., arXiv: 1311.0733v3
Home page

© Steklov Mathematical Institute of RAS, 2004–2017