Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi.ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Shokurov Vyacheslav Vladimirovich
(full list of publications)
| by years | scientific publications | by types |



   2017
1. V. V. Shokurov, “A criterion for semiampleness”, Izv. Math., 81:4 (2017), 827–887  mathnet  crossref  crossref  isi  elib  scopus

   2013
2. V. V. Shokurov, Biratsionalnaya geometriya i chislennye invarianty algebraicheskikh mnogoobrazii, Globus, Obschematematicheskii seminar, 6, eds. M. A. Tsfasman, V. V. Prasolov, MTsNMO, M., 2013 , 31 pp.
3. V. V. Shokurov, Log adjunction: effectiveness and positivity, 2013 , 51 pp., arXiv: 1308.5160  adsnasa

   2011
4. Y. Chen, V. Shokurov, “Strong rational connectedness of toric varieties”, Math. Res. Lett., 18:6 (2011), 1227–1237 , arXiv: 0905.1430  crossref  mathscinet  adsnasa  isi  elib  scopus
5. V. Shokurov, S. R. Choi, “Geography of log models: theory and applications”, Cent. Eur. J. Math., 9:3 (2011), 489–534  crossref  mathscinet (cited: 8)  zmath  isi (cited: 6)  elib (cited: 9)  scopus (cited: 9)

   2010
6. C. Birkar, V. V. Shokurov, “Mld's vs thresholds and flips”, J. Reine Angew. Math., 638 (2010), 209–234  crossref  mathscinet (cited: 6)  zmath  isi (cited: 4)  elib (cited: 2)  scopus (cited: 3)

   2009
7. Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199  crossref  mathscinet (cited: 35)  zmath  isi (cited: 34)  elib (cited: 32)  scopus (cited: 35)
8. V. V. Shokurov, “Letters of a Bi-rationalist. VII Ordered Termination”, Proc. Steklov Inst. Math., 264 (2009), 178–200  mathnet  crossref  mathscinet  isi (cited: 7)  elib (cited: 6)  elib (cited: 6)  scopus (cited: 8)
9. V. I. Danilov, V. V. Shokurov, Algebraic curves, algebraic manifolds and schemes, Springer, 2009 (kitaiskoe izdanie)

   2008
10. V. V. Shokurov, “Svoistvo BP diviorialnogo prisoedineniya”, Tezisy dokladov Mezhdunarodnoi algebraicheskoi konferentsii k 100-letiyu so dnya rozhdeniya A. G. Kurosha, Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 2008, 259–260

   2006
11. Birkar Caucher, V. V. Shokurov, Mld's vs thresholds and flips, 2006 , 41 pp., arXiv: math/0609539

   2005
12. V. A. Iskovskikh, V. V. Shokurov, “Birational models and flips”, Russian Math. Surveys, 60:1 (2005), 27–94  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  elib (cited: 7)  elib (cited: 7)  scopus (cited: 6)

   2004
13. V. V. Shokurov, “Letters of a Bi-rationalist V: Mld's and Termination of Log Flips”, Proc. Steklov Inst. Math., 246 (2004), 315–336  mathnet  mathscinet  zmath

   2003
14. A. A. Borisov, V. V. Shokurov, “Directional Rational Approximations with Some Applications to Algebraic Geometry”, Proc. Steklov Inst. Math., 240 (2003), 66–74  mathnet  mathscinet  zmath
15. Proc. Steklov Inst. Math., 240 (2003), 75–213  mathnet  mathscinet  zmath

   2002
16. Shokurov Vyacheslav V., “Letters of a bi-rationalist. IV. Geometry of log flips”, Algebraic geometry, de Gruyter, Berlin, 2002, 313–328  mathscinet (cited: 6)  zmath

   2001
17. Yu. G. Prokhorov, V. V. Shokurov, “The first main theorem on complements: from global to local”, Izv. Math., 65:6 (2001), 1169–1196  mathnet  crossref  crossref  mathscinet  zmath  elib (cited: 6)  scopus (cited: 4)
18. V. V. Shokurov, “Log-modeli 3-foldov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 33, VINITI, M., 2001, 127–181  mathnet  mathscinet (cited: 61)  zmath; V. V. Shokurov, “3-Fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699  crossref  mathscinet  zmath  scopus (cited: 52)

   2000
19. Shokurov V. V., “Complements on surfaces”, Algebraic geometry, 10, J. Math. Sci. (New York), 102:2 (2000), 3876–3932  crossref  mathscinet (cited: 42)  zmath
20. V. V. Shokurov, “On Rational Connectedness”, Math. Notes, 68:5 (2000), 652–660  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 5)  scopus (cited: 5)

   1998
21. Danilov V. I., Shokurov V. V., Algebraic curves, algebraic manifolds and schemes, Translated from the 1988 Russian original by D. Coray and V. N. Shokurov; Translation edited and with an introduction by I. R. Shafarevich; Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Algebraic geometry. I, Encyclopaedia Math. Sci., 23, Springer, Berlin, 1994], Springer-Verlag, Berlin, 1998 , vi+307 pp.  mathscinet (cited: 12)
22. Shokurov V. V., “Algebraic curves and their Jacobians”, Algebraic geometry, III, Encyclopaedia Math. Sci., 36, Springer, Berlin, 1998, 219–270  mathscinet (cited: 4)

   1997
23. Shokurov V. V., “Letters of a bi-rationalist. I. A projectivity criterion”, Birational algebraic geometry (1996, Baltimore, MD), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 143–152  crossref  mathscinet (cited: 8)  zmath

   1993
24. V. V. Shokurov, “Dobavlenie k state “Trekhmernye logperestroiki””, Izv. RAN. Ser. matem., 57:6 (1993), 141–175  mathnet (cited: 5)  mathscinet (cited: 10)  zmath  adsnasa; V. V. Shokurov, “An addendum to the paper “3-fold log flips””, Russian Acad. Sci. Izv. Math., 43:3 (1994), 527–558  crossref  mathscinet  zmath  isi (cited: 5)
25. V. V. Shokurov, “Semistable 3-fold flips”, Izv. RAN. Ser. matem., 57:2 (1993), 165–222  mathnet (cited: 6)  mathscinet (cited: 12)  zmath  adsnasa; Russian Acad. Sci. Izv. Math., 42:2 (1994), 371–425  crossref  mathscinet  zmath  isi (cited: 4)

   1992
26. V. V. Shokurov, “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–203  mathnet (cited: 96)  mathscinet (cited: 129)  zmath  adsnasa; V. V. Shokurov, “Three-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202  crossref  mathscinet  zmath  isi (cited: 90)

   1989
27. V. V. Shokurov, “Algebraic curves and their Jacobians”, Algebraic geometry – 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 36, VINITI, Moscow, 1989, 233–273  mathnet  mathscinet  zmath

   1988
28. V. V. Shokurov, “Riemann surfaces and algebraic curves”, Algebraic geometry – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, VINITI, Moscow, 1988, 5–171  mathnet  mathscinet  zmath

   1987
29. Shokurov V. V., “Numerical geometry of algebraic varieties”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (1986, Berkeley, Calif.), Amer. Math. Soc., Providence, RI, 1987, 672–681  mathscinet (cited: 5)

   1985
30. V. V. Shokurov, “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 635–651  mathnet (cited: 33)  mathscinet (cited: 30)  zmath; V. V. Shokurov, “The nonvanishing theorem”, Math. USSR-Izv., 26:3 (1986), 591–604  crossref  mathscinet  zmath

   1984
31. V. V. Shokurov, “O zamknutom konuse krivykh trekhmernykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 203–208  mathnet (cited: 2)  mathscinet (cited: 3)  zmath; V. V. Shokurov, “On the closed cone of curves of algebraic 3-folds”, Math. USSR-Izv., 24:1 (1985), 193–198  crossref  mathscinet  zmath

   1983
32. Shokurov V. V., “Extremal contractions of three-dimensional algebraic varieties”, The birational geometry of algebraic varieties (Russian), Yaroslav. Gos. Ped. Inst., Yaroslavl', 1983, 74–90, 102  mathscinet (cited: 1)  zmath
33. V. V. Shokurov, “Mnogoobraziya Prima: teoriya i prilozheniya”, Izv. AN SSSR. Ser. matem., 47:4 (1983), 785–855  mathnet (cited: 19)  mathscinet (cited: 21)  zmath; V. V. Shokurov, “Prym varieties: theory and applications”, Math. USSR-Izv., 23:1 (1984), 83–147  crossref  mathscinet  zmath

   1981
34. Shokurov V. V., “Distinguishing Prymians from Jacobians”, Invent. Math., 65:2 (1981), 209–219  crossref  mathscinet (cited: 8)  zmath  adsnasa  isi (cited: 20)  elib (cited: 2)  scopus (cited: 20)

   1980
35. V. V. Shokurov, “Integraly Shimury parabolicheskikh form”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 670–718  mathnet (cited: 5)  mathscinet (cited: 9)  zmath  adsnasa; V. V. Shokurov, “Shimura integrals of cusp forms”, Math. USSR-Izv., 16:3 (1981), 603–646  crossref  mathscinet  zmath  isi (cited: 8)
36. V. V. Shokurov, “Izuchenie gomologii mnogoobrazii Kugi”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 443–464  mathnet (cited: 5)  mathscinet (cited: 2)  zmath; V. V. Shokurov, “The study of the homology of Kuga varieties”, Math. USSR-Izv., 16:2 (1981), 399–418  crossref  mathscinet  zmath  isi (cited: 7)

   1979
37. Bočvar D. A., Šokurov V. V., “Behavior of the likelihood functional for “tertium non datur” in certain sequences of logical matrices”, Studies in nonclassical logics and set theory (Russian), “Nauka”, Moscow, 1979, 330–344  mathscinet
38. Iskovskih V. A., Šokurov V. V., “Biregular theory of Fano 3-folds”, Algebraic geometry, Proc. Summer Meeting (Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., 732, Springer, Berlin, 1979, 171–182  crossref  mathscinet (cited: 10)
39. V. V. Shokurov, “Suschestvovanie pryamoi na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 922–964  mathnet (cited: 16)  mathscinet (cited: 19)  zmath  adsnasa; V. V. Shokurov, “The existence of a straight line on Fano 3-folds”, Math. USSR-Izv., 15:1 (1980), 173–209  crossref  mathscinet  zmath  isi (cited: 3)
40. V. V. Shokurov, “Gladkost obschego antikanonicheskogo divizora na mnogoobrazii Fano”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 430–441  mathnet (cited: 12)  mathscinet (cited: 19)  zmath; V. V. Shokurov, “Smoothness of the general anticanonical divisor on a Fano 3-fold”, Math. USSR-Izv., 14:2 (1980), 395–405  crossref  mathscinet  zmath  isi

   1976
41. V. V. Shokurov, “Modular symbols of arbitrary weight”, Funct. Anal. Appl., 10:1 (1976), 85–86  mathnet  crossref  mathscinet  zmath  scopus (cited: 6)
42. V. V. Shokurov, “Holomorphic differential forms of higher degree on Kuga's modular varieties”, Math. USSR-Sb., 30:1 (1976), 119–142  mathnet  crossref  mathscinet  zmath  isi (cited: 9)

   1975
43. V. V. Shokurov, “Periods of cusp forms, and Kuga varieties”, Uspekhi Mat. Nauk, 30:3(183) (1975), 183–184  mathnet  mathscinet  zmath

   1971
44. V. V. Shokurov, “The Noether–Enriques theorem on canonical curves”, Math. USSR-Sb., 15:3 (1971), 361–403  mathnet  crossref  mathscinet  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2017